Improving the Quality of Legacy Code by Reverse Engineering

Rosangela D. Penteado

U

DC, Federal University of Sdo Carlos
CP 676 — Sdo Carlos - SP — Brazil
rosangel@dc.ufscar.br

Rosana T. V. Braga
DI, University of Franca/SCE-ICMC, University of Sdo Paulo
CP 668 - Sdo Carlos —SP —Brazil
rtvb@icmc.sc.usp.br

Paulo C. Masiero

el

SCE-ICMC-University of S&o Paulo
CP 668 - Séo Carlos — SP — Brazil
masiero@icmec.sc.usp.br

ABSTRACT

An approach for improving the quality of legacy code is
presented. It consists of the reengineering of systems developed
with procedure orientation to object orientation based on
Fusion/RE. Fusion/RE is an overall process for conducting
object oriented reverse engineering in procedure oriented
legacy systems. The reengineering involves no change in
functionality or programming language. The proposal is an
alternative to existing methods for doing reengineering directly
from the legacy code, which present difficulties that are
overcome by first doing the reverse engineering. An
experimental application of the proposed approach to a real
system with 20K lines of Clipper code is reported. Through
this, it was possible to observe real improvement in the
maintainability of the legacy system. Corrective, evolutionary
and perfective maintenance is easier to conduct after the
reengineering.

Keywords: Reuse, Maintainability, Object Oriented Reverse
Engineering, Reengineering, Fusion/RE, Object-Oriented,
Segmentation.

1. INTRODUCTION

Reengineering legacy information systems is of extreme
importance as documentation can be lost, system development
and maintenance teams can be substituted and administration
rules can be changed. The systems, however, are usually kept
running as the activity they support cannot be halted.

Several authors have been interested in the recycling of
systems towards object orientation [5, 6, 12]. Sneed [12] shows

! Financial Support from RHAE/CNPq grant 610623/95-8
2 Financial Support from CNPq and FAPESP

a process for reengineering procedure oriented COBOL
programs to object orientation. This process is done in two
stages, the first preserving the original language, not object
oriented, in which the system was developed, and the second
changing the language to one version of object oriented
COBOL. He emphasizes several reasons for the application of
this process, among them the best use made of the features
offered by the object oriented technology, the reduction of
maintenance costs and the increase of programs and data reuse
in the new architecture of the system. The first stage, in which
code segmentation is done, is very attractive as it permits to
obtain several advantages of the object-oriented approach even
not doing the second.

Sneed enumerates some obstacles present in this process. First,
the difficulty to separate the legacy code into the prospective
methods, as they are intertwined in the code. Second, the short
size of some of these methods and their high number. Third,
the difficulty of establishing automatic rules for definition of
the objects, because these only can be defined in the context of
their use. Fourth, the difficulty to eliminate redundant code, as
it is very hard to know what is redundant. Finally, the difficulty
in eliminating equal and opposite names, because the legacy
system uses the same name for different things. It is important
to notice that Sneed conducts the reengineering without first
doing the reverse engineering of the legacy system. In the same
Conference where he has shown his work [12], part of the
authors of this paper have proposed an approach to this
problem, Fusion/RE [9], to do reverse engineering in legacy
code based on the Fusion method [4].

The purpose of this paper is first to apply Fusion/RE to legacy
information systems and then to do the first phase of the
reengineering as suggested by Sneed, preserving the
functionality, the programming language and other factors, but

changing the paradigm, from procedure to object orientation.
Differently from Sneed, we do not proceed doing the change of
language to one object oriented, as that author reports no
problems in this phase of the reengineering. Also, because part
of the authors of this paper is participating in an experiment for
this phase, based on a software tool called Draco-Puc [10].

This paper shows briefly, in section 2, an introduction to the
proposed approach and in section 3 this approach is applied to
a sample information system. In section 4 the reengineering
done is evaluated and in section 5 the conclusions are shown.

2. REENGINEERING BASED ON FUSION/RE

Figure 1 shows the scheme of the proposed approach, where
we can notice that two steps are added to Fusion/RE [9],
corresponding to the system reengineering. The four initial
steps, referring to reverse engineering, that are briefly
described here, can be found in more detail in [8,9].

User
Knowledge

Other Relevant

Documentatiol Documents

Existing 4

Steps

System Architecture Documents
1.Revitalize
Architecture Input/Output | | program Structure | |[€———
Listing
[D
A
Current System Analysis Model (CSAM)
2 Retrieve the Life Cycle Model T
Current System Themes Y
Analysis Model < > A
Operation
| Object Model Model
,,,,,,,,,, - | ________ D
System Analysis Model (SAM)
3.Create the System - |
Analysis Model Object Model Life Cycle Model
<« C
Operation Model
T
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I
4.Map the System SAM to CSAM Mapping o)
Analysis Model N
into the Currrent . " Methods/ < d
Object Attributes/
Systems Analysis|) Data Elements Procedures N
Model
A
Forward System Design R
L Ly <+—>
Object Interaction Graphs Y
5. Conduct the >
Forward — Visibility Graphs
System Design Class Descriptions
Inheritance Graphs
6. Do Program
Segmentation 4’4—' L

Figure 1 - Scheme of the Proposed Approach
Step one of the approach consists in revitalizing the system
architecture based on documentation available, if it exists, or
on the source code. Benedusi [1] and Wong [13] show tools to
extract documentation from the source code, but those have not
been used. Other authors [2, 5, 11], give guidelines to

manually retrieve information from code, in order to help in
object identification. At the end of the step, we have a list of all
procedures, with their description and call hierarchy
(call/called by).

Step two is concerned with retrieving the Current System
Analysis Model (CSAM). In it we produce a pseudo Object
Model of the system, identifying the classes and their
relationships together with their attributes and associated
procedures. We observe that many of these procedures contain
anomalies, that is, a same procedure deals with more than one
class. Those procedures are classified as (c) for constructor,
when the procedure alters a data structure and (o) for observer,
when the procedure only consults the data structure. When one
procedure consults and alters the same data structure it is
classified only as (c). The signal + associated to annotation (c)
and/or (o), represents that the procedure constructs and/or
observes two or more data structures. This way, the procedures
with anomalies can be classified as (oc), (o+c), (oc+) and
(o+c+). The procedures are classified as (i) when they refer to
the implementation type utilized. Next, we define the Life
Cycle Model, which portrays the system global behavior,
concerning the chronological order in which the operations are
performed. These are the bases to construct a system Operation
Model, in which each operation is described in detail,
according to a pre-established template. In fact, it is a pseudo
object oriented model, as it does not attend all the restrictions
of object orientation.

Step three is concerned with creating the System Analysis
Model (SAM), focusing the application domain and not the
implementation. The object model, the life cycle model and the
operations model are abstracted from those constructed
previously, with some additional care, as for example, to
change the names to gain expressiveness. The procedures
without anomalies generate methods directly, whereas those
with anomalies have to be divided in several methods, so that
each one is associated with only one class. Another aspect of
the analysis is the preparation of a scenario. The system inputs
and outputs need agents to control them and we must identify
these agents through system functions, creating the
corresponding scenarios. A scenario is a sequence of events
that run between agents and the system with some purpose.
Each scenario involves agents, the tasks that they want the
system to do and the sequence of communications involved in
those tasks. The scenarios help in the preparation of the life
cycle and operation models.

Step four does a mapping from the System Analysis Model to
the Current System Analysis Model, describing the
relationships between them. The classes, attributes and
methods of the SAM are mapped into the corresponding
elements of the CSAM, with annotation of possible
inclusions/exclusions. This step is important in future
maintenance and reuse of the system, in case only reverse
engineering is done.

Step five takes care of the forward system design, considering
the reengineering with change of the implementation paradigm,
but without changing the functionality. In this step we
construct the Object Interaction Graphs, Visibility Graphs,
Class Description and Inheritance Graphs, according to the
Fusion Method [4].

The Object Interaction Graphs are constructed based on the
Operation Model. They show the communication between
objects, by methods, distinguishing operation controller classes
from their collaborator classes. A pseudocode is written at the
operation method controller class showing its logic and the
sequence of calling the methods of the collaborator classes. It
is important to notice that the method of the controller class
(that implements an operation) interacts with more than one
object, but this occurs through the methods of the collaborator
classes, so avoiding anomalies to occur.

The Visibility Graphs establish the communication between
classes, limiting which can exchange messages and of which
types. In the Object Interaction Graph it is assumed that all
objects are mutually visible, and can exchange messages
among themselves, but this is restricted in the visibility graph.

The Class Descriptions contain complementary documentation
to the system object model. To each class is joined information
that is distributed among the elements of the documentation
now produced. From the Object Interaction Graph the methods
and parameters are extracted; from the Object Model some data
attributes are extracted and from the Visibility Graphs the
object attributes are extracted. For each class its entire
interaction with other classes is specified.

The Inheritance Graphs are a mechanism through which a class
can be defined as a specialization of another.

The procedures with anomalies can be examined in face of the
documentation produced in step five. The result of this exam
will dictate how to perform the next step. In that step the
original program can be split into methods. Tests can give
evidences that the same situation is executed in the same order.

Step six treats the system segmentation. The original
procedures with anomalies are here divided in methods defined
in the previous step. This definition of the methods becomes a
strong guide for each line of code to be joined with the method
that it belongs to. Thus, the difficulties in doing the
segmentation, according to Sneed [12], are attenuated.

The code is examined and comments are inserted establishing a
correspondence between this code and the methods that were
defined. The pseudocode of the methods of the controller
classes is reviewed to consider implementation details. This
done, the parts corresponding to each method are put together.

Two key points should be noticed by the reader, to understand
how steps 5 and 6 work. First, the segmentation of the program
is done considering the forward system design, developed
according to the Fusion design step, that was conducted as if
the system would be re-programmed using an object oriented
language. This facilitates the segmentation, as was already
observed, and eliminates the difficulties shown by Sneed.
Second, the segmentation does not change the programming
language, which is not object-oriented. It is a code
programmed with the style of abstract data types and in which
the mechanisms of specialization/generalization and
aggregation can be simulated [7]. However, after the
segmentation, it can be easily translated to an object oriented
language as Sneed has done with OO COBOL [12].

We have observed that, in the initial process, the submodule
that interacts with a specific class continues to have activity

with something else, as for example: interface, physical aspects
of the system, etc. These activities must be isolated in other
submodules. After that we can proceed doing the test of the
system re-segmented, to assure that it has the same
functionality.

3. THE CASE OF REENGINEERING A
CLIPPER SYSTEM

An experiment was done with the process presented in section
2 to assess its application to an information system developed
in Clipper, with 20.000 lines of code. The system takes care of
the services done in a mechanic and electric car repair shop,
also doing stock control of the parts used. The customer goes
to the shop to ask for services in his vehicle. A customer can
have several vehicles. The same vehicle can return to the shop
many times; a distinct customer order is prepared in each visit.
This contains data about the customer, the vehicle and the
services to be done. When the service is completed, the
customer order is fulfilled with the parts used and the labor
work performed. Sometimes the repair can need parts that do
not exist in stock. These are acquired outside and have to be
included in the customer’s order. The recording of these parts
is important to the shop management because they are
candidates to be stocked. The possible vehicle models need to
be recorded in the system, so that price tables are utilized for
payment of services, both electrical and mechanical, according
to the vehicle model.

We have chosen this system because it is a real working
system, presents maintenance difficulties and is obsolete in
relation to the user interface. The six steps of the proposed
approach were applied to this system, as described in the
following paragraphs.

In step 1, as the documentation of the system was considered
reasonable, it was necessary only its re-organization. There was
a detailed description of the relational tables of the database, of
the system menus and, for each procedure, the “call/called by”
relationship.

In step 2, the Current System Object Model was constructed,
based on the analysis of the databases (files with extension
.DBF) and of the programs (files with extension .PRG). We
selected as classes all files that contain information on the
system. In fact, this is a pseudo object model, as it is the result
of an adaptation of the procedural implementation to an object
oriented one. In the left side of Figure 2, some pseudo classes
of the actual implementation are presented. In the right side, we
show the procedures of the legacy system, as for example the
module Coscreel, responsible to entry a customer order. It
contains anomalies, as it interacts with the pseudo classes:
Customer, Custord, Custvehi and Vehitype. We can observe
the anomalies by the four arrows going from this procedure to
different pseudo classes. Figure 3 shows, partially, the system
Life Cycle Model. The system Operation Model was also
developed, but is not shown here due to space limitations.

In step 3, the pseudo classes of CSAM were abstracted to
classes of SAM. Following the guidelines contained in [3], this
abstraction was done in seven stages. In the first stage the
foreign keys of the tables were represented in the model as
relationships. In the second, the tables implementing

relationships were modeled as relationships, and the
corresponding keys were inserted in the appropriate classes. In
the third, class aggregation and specialization were identified.
In the fourth, system inputs and the external agents that
originate them were identified. In the fifth, system outputs and
the corresponding external agents were identified. In the sixth,
name generalization for the model produced in the fourth stage
and class attributes have been added. In the seventh, name
generalization for the model produced in the fifth stage was
done. The models obtained in the two last stages constitute the
abstracted object model. In the left side of figure 4 some
classes abstracted from CSAM are shown. In the right side the
methods obtained after eliminating the anomalies of the
procedure “Coscreel” of figure 2 are shown.

CSAM I PROCEDURES
s
Customer | ¥-__ |
1 i A
I
@ I Coscreet (c¥)
L -
< //]I Y
L DS2 . ‘/ I / /
Custvehi I N
|
|
al
oss ¥ |/
Custord H/
/1
DS4 o
P2
1} venitype ‘”J[”””” Vehimod (c)
|
|

Figure 2 - CSAM and Legacy Code Procedures

In step 4, the mapping between SAM and CSAM classes was
easily produced, as the detailed transition described in the
previous step provided no loss of information. This mapping
shows clearly what each of the methods does. So the system
maintenance is eased because we know exactly which piece of
code must be altered or modified.

In step 5, the Object Interaction Graph, shown in figure 5, was
prepared, based on the Operation Model and on the Life Cycle
Model. As we can observe, Customer Order is the controller
class of this operation. The Class Descriptions and the
Visibility Graph were also developed, but are not included here
due to space shortage.

In step 6, the legacy code was divided in methods, according to
the anomalies identified in step 2 and eliminated in step 3. In
our experiment we could observe the points alerted in [12]:
there were several methods and almost all of them contained
just a few lines of code. But the possibility of reusing them has
been increased because they have well defined functionality.

Lifecycle Electrical and Mechanical Car Repair Shop : =
(Transaction | File_Update | Print | Search)*

Transaction = (entry_customer_order . [#CO_printed]) |
modify_customer_order | eliminate_customer_order | . . .)

File_Update = (insert_part | insert_customer |. . .)
Print = (pending_CO_Report | monthly_CO_Report | . . .)

Search = (search_part | search_customer_order | ...)

Figure 3 — Partial system Lifecycle Model

Figure 6 shows a sample of the legacy code and its
corresponding segmented code. Figures 7 shows methods of
the segmented code. We observe that the program structure and
functionality remain unaltered, as the pieces that contain
anomalies are isolated in modules (in truth, methods). For
example, the command “DO OBTNEXCO” refers to the
method shown in figure 7, that obtains the next customer order
available. Due to Clipper limitations it was necessary to
abbreviate the method names of SAM to a maximum of eight
characters, for example, OBTNEXCO, showed in Figure 7,
corresponds to method Obtain_Next_CO-Num.
1

SAM I METHODS
II'///' Open_Cust_File (M1-1)
::::T———ﬂﬁﬂb Create_Cust (M1-9)
o I [~ Choose_Cust (M1-8)
Customer [~-"_]~~=-» Obtain_Cust_Data (M1-11)

‘ T ¥ |- Show_Cust_Screen (M1-10)
a4 “Write_Cust (M1-18)

@ I\A Close_Cust_File (M1-21)
|
* i -9 Choose_Vehi (M1-12)
*************** Create_Vehi (M1-19)
C2 ~}-—-» Open_Vehi_File (M1-3)
* Vehicle [~ - P Close_Vehi_File (M1-23)
R e -==-P Obtain_Vehi_Data (M1-14)
1 I\\\‘ Show_Vehi_Screen (M1-13)
is |
attended |
by [
h I Obtain_Next_CO_Num (M1-5)
as
a //], v Open_CO_File (M1-2)
* N
c3 - /:l//b Obtain_CO_Entry Data (M1-16)
Customer | _____— Create_Entry_CO (M1-20)
Order -y Close_CO_File (M1-22)
] ~~» Show_CO_Entry_Screen (M1-15)
\\\\‘l\:;\ Show_CO_Date_Num(M1-6)
I Obtain_CO_Date (M1-7)
L Cc4 4”7——1”” Modify_Mod (M2)

-

Vehicle |------1 — ¥ Open_Mod_File (M1-4)
Model [f——create Mod (M1-17)
II‘*\» Close_Mod_File (M1-24)

Figure 4 — SAM and corresponding methods

(5
Obtain_Next_CO_Num

@ (16)
Open_CO_File() Obtain_CO_Entry_Datat()

l l

new cus:

(1)
Open_Cust_File
pen LSt Customer

(1M
Obtain_Cust_Data()

Entry_Customer_Order()

»
>

(6) new co:
Show_CO_Date_Num()

@) |:

Obtain_CO_Data()

Customer Order

(18)

(10)
Show_Cust_S
ow_Cust_Screen() Write |Cust()

(21)
Close_Cust_File()

(4)
(7) J, Open_Mod_File()
Create_Mod() new mod:
(24) '
Close_Mod_File() Vehicle Model

e f

(15) Create_CO_Entry

Show_CO_Entry_Screen() (22)
Close_CO_File()

Operation: Customer_Order:Entry_Customer_Order()

Open Customer File (1)
Open Customer Order File 2)
Open Vehicle Model File (3)
Open Vehicle File (4)

Obtain next customer order nunber (5)
Show current date and number of CO (6)
Obtain entry date of customer order (7)

3)

(12) 3)_

Choose_Vehi() Open_Vehi_File()
(13)

Show_Vehi_Scree

new vehi:

Vehicle
A

(14) A
Obtain_Vehi_Data()

(19)
Create_Vehi() (23)

Close_Vehi_File()

Choose a customer in file (8)
If new customer then

Create a new customer 9)
Show screen with customer data (10)
Obtain customer data 11

Figure 5 - Example of the System Object Interaction Graph

As it can be observed in figure 5, Customer Order is the
controller class of the operation “Entry_Customer_Order”. This
class continues interacting with the others by message exchange
that, in the case of Clipper, is implemented by the calling of
procedures/functions.

It is important to notice that, after the segmentation, extentions
and maintenance can be performed more easily due to the
object-oriented paradigm.

4. EVALUATING THE REENGINEERING
PERFORMED

As it has been seen in section 3, applying the approach
described in section 2, we obtain a configuration of the legacy
system similar to that produced if the first phase of the
procedure proposed by Sneed was applied. Our path is longer
than that suggested by Sneed, but overcomes a big piece of the
difficulties that he identifies when his approach is applied.

For example, the difficulty in splitting the code into the
prospective methods is attenuated as, when we reach the point
in which this has to be done, we know beforehand for each
procedure which methods have to be generated. Thus it is less
confuse to know to what method a piece of code belongs to and

through segmentation its separation is done. This guideline
helps disentangle the code when it is intertwined.

Thus, the code produced in step 6 is supported by the design
documentation done in step five. With this, we obtain a more
secure support to change other factors of the implementation in
future reengineering as, for example, the programming
language. Compared with the approach proposed by Sneed, the
code segmented appropriately, with the documentation
generated, enhances the possibility and the facility of new
reengineering. We can think about the methods of the operation
controller classes as structures that facilitate the reuse of the
methods of the collaborator classes. Actually, they form
building blocks to increase and enlarge the system.

Martin and Odell have discussed in their book [7] an approach
that can be followed to implement an object oriented system
using a procedural language like Cobol, Fortran, etc. In
addition to what we have done, provisions should be made to
simulate inheritance, specialization, aggregation, etc. to
conform to the approach suggested by them.

/I Program Name:COSCREE1.PRG

SELECT 1

USE CUSTOMERS INDEX CUSTCOD, CUSTNAME
SELECT 2

USE CUSTORD INDEX CUSTCO,CUSTORD
SELECT 3

USE CUSTVEHI INDEX CUSTVCOD
SELECT 4

USE VEHITYPE INDEX VEHICOD,
VEHIMAN,VEHITYPE

DO LOGOTYPE

SELECT 2]
SET ORDER TO 2
GO BOTTOM

rec=.f. N

custcod ="
vnhum =0
imp=""
ordnumb = ORDNUMB + 1
deld = DATE() —
mv = SPACE(15)
tv = SPACE(30)
@ 6,15 SAY "Entry Customer Order - First Part"
@ 9, 5 SAY "Entry Date:"
@ 9, 22 GET entdate PICTURE "@E"
@ 9,48 SAY "C.O. Number:"
@ 9,56 SAY ordnum PICTURE[99999]
@ 10, 5 SAY "Customer Code:"
@ 10, 24 GET custcod PICTURE [99999] =
when cusearch()
DO MESSAGE WITH " <99999> Include a New
Customer <ESC> Quit <Enter> Choose"

READ >

custcod=val(custcod)
IF lastkey()#27 .and. custcod <> 0

/I Segmented Program: Entry_CO.PRG
/I Method entry_customer_order

DO OPENCUST // Method Open_Cust_File()
DO OPENCO /I Method Open_CO_File()

DO OPENVEHI! /I Method Open_Vehi_File()

DO OPENVEHITYPE // Method Open_Vehi_type_File()
DO LOGOTYPE

Yournum=0
DO OBTNEXCO // Method Obtain_Next_CO_Num()

ready = .f.
DO SHOWCODT // Method Show_CO_Date_Num()
DO OBTDATOS // Method Obtain_CO_Date()

Custnew= f.
DO CHOOCUST with ready,custnew
/I Method Choose_Cust()

if ready

Figure 6 - Piece of Clipper Program with procedure orientation (in the left) and its corresponding piece of segmented Clipper program (in
the right)

FUNCTION OBTNEXCO() // Method Obtain_Next_CO_Num()
* method of Customer Order to obtain the next customer order
* number available

SELECT CUSTORD
SET ORDER TO 2
Goto bottom

Yournum = CONUM + 1
SET ORDERTO 1

RETURN NIL
@

FUNCTION SHOWCODT() // Method Show_CO_Date_Num()

* method of Customer Order to show customer order date and
* number

6, 15 SAY "Entry Customer Order - First Part"
9, 5 SAY "Entry Date:"

8 SAY "C.O. Number:"

6 SAY Yournum PICTURE[99999]

5 SAY "Customer Code:"

RETURN NIL
(b)

FUNCTION CHOOCUST() // Method Choose_Cust()
* method of Customer to choose a customer from list

PARAMETERS Ready, NewCustomer

Custcod=0

@ 10, 24 GET custcod PICTURE [99999] when cusearch()

DO MESSAGE WITH " <99999> Include a New Customer
<ESC> Quit <Enter> Choose"
READ
IF lastkey()=27 .or. custcod=0
Ready = .f. // a customer was not choosen
ELSE
Ready = .t.
IF custcod=99999
NewCustomer = .t. // a new customer will be inserted
ENDIF
ENDIF

RETURN NIL
©

Figure 7 - Clipper program corresponding to methods of the system

We had the concern to prepare the contents of the figures in an
articulate way, so it is worth to revisit them in more detail. In
figure 6 left, a piece of the legacy code is reproduced.
Observing figure 2 together with it we can see that the code
refers to procedure Coscreel. Its interaction with different
objects can be observed by its opening of different tables:
Customer, Custvehi, Custord and Vehitype. This constitutes the
anomaly noted by c+ in figure 2. In figure 4 the methods
created to avoid this anomaly are shown. In figure 5 we see that
most of these methods belong to collaborator classes of this
operation, as for example method Choose_Cust() of class
Customer. In the right side of figure 6 these methods are called
in the piece of segmented code of the operation
“entry_customer_order”. In figure 7 the code of three methods
showed in figures 4, 5 and 6 is exhibited.

One advantage of our approach is that the segmentation can be
conducted with the in house team, without additional training
in a new object oriented programming language. The reverse
engineering part of the process demands a good deal of training
if also done with in house staff. Combining internal staff with
an external consultant expert in object oriented development
would be a feasible solution.

5. CONCLUSIONS

An approach to do reverse engineering followed by a
reengineering, with the purpose of changing the orientation
paradigm of the system, initially procedurally oriented, to
object oriented, without change of functionality or
programming language, was presented.

This approach presents the advantage of producing better
compatibility between the analysis model of the object oriented
system done by Fusion/RE and the legacy code. If the
reengineering here discussed were not done, we would have
more difficulty in recognizing in the code the corresponding
components of the analysis model. The resulting segmented
code is easier to understand, maintain and reuse.

Within the reengineering done, this is recognized immediately,
even more because it has all the documentation of the design “a
la” Fusion produced by the forward engineering embedded in
the reengineering procedure. To continue the evolution of the
system, as for example in the reengineering with change of
functionality, this compatibility of the code with the analysis
model is of utmost importance.

We have further observed that in the initial procedures
segmented there was an increase in the lines of code number of
about 80%. However, as the work proceeded, there was a
reduction of about 40% thanks to methods reuse. The larger
possibility of reuse in other systems, due to better defined
methods functionality, should be considered when looking at
these numbers.

6. ACKNOWLEDGMENTS

The authors thank Dr. Ferndo Germano for his active
participation in the research project this paper refers to and
Tiemi C. Sakata for the application of the proposed approach to
the actual system described.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

REFERENCES

Benedusi, P.; Cimitile, A.; De Carlini, U., Reverse
Engineering Processes, Design Document Production,
and Structure Charts. The Journal of Systems and
Software, Vol. 19, No. 3, pp. 225-232, 1992.

Biggerstaff, T. J.; Mitbander, B. G.; Webster,D. E.,
Program Understanding and the Concept Assignment
Problem. Communications of the ACM, Vol. 37,
n°s, 1994.

Braga, R. T. V.; Masiero, P. C., Detailing of
Fusion/RE Abstraction Analysis Model Step.
Technical Report number 70, ICMC-USP, Sédo
Carlos-SP,1998 (In Portuguese).

Coleman D. et al, Object Oriented Development -
The Fusion Method. Prentice Hall, 1994.

Gall, H.; Klésch, R., Finding Objects in Procedural
Programs: An alternative Approach. Proceedings of
the 2nd Working Conference on Reverse Engineering,
Toronto, Ontario, Canada. IEEE, pp. 208-216, 1995.

Jacobson, I.; Lindstrém, F., Re-engineering of Old
Systems to an Object-Oriented Architecture.
Proceedings of the OOPSLA’91, ACM, pp. 340-350,
1991.

Martin, J.; Odell, J., Object-Oriented Analysis and
Design, Prentice Hall, 1992.

Penteado, R.D., A Method for Object Oriented
Reverse Engineering. ScD Thesis, USP, Institute de
Fisica de Sao Carlos, 1996.(In Portuguese)

Penteado, R.D., Germano, F.; Masiero, P.C., An
Overall Process Based on Fusion to Reverse Engineer
Legacy Code. Il Working Conference on Reverse
Engineering, IEEE, Monterey, California, pp. 179-
188, 1996.

Prado, A.F., Domain Oriented Software
Reengineering Strategy. ScD Thesis, PUC-RJ, 1992.
(In Portuguese)

Sneed, H. M.; Nvary, E., Extracting Object-Oriented
Specification from Procedurally Oriented Programs.
Il Working Conference on Reverse Engineering,
IEEE, 1995.

Sneed, H. M., Object-Oriented COBOL Recycling.
Il Working Conference on Reverse Engineering.
IEEE, Monterey, California, pp. 169-178, 1996.

Wong, K. et al, Structural Redocumentation: A Case
Study. IEEE Software, Vol.12, No.l, pp. 46-54,
1995.

