
The Role of Pattern Languages
in the Instantiation of

White-Box Object-oriented Frameworks

Rosana T. V. Braga? and Paulo Cesar Masiero??

Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo - Brazil
{rtvb,masiero}@icmc.sc.usp.br

Abstract In this paper we propose the use of pattern languages to
guide a framework instantiation. Both the framework and the pattern
language refer to the same domain, and the framework must have been
constructed based on the pattern language. The framework instantiation
here proposed is done in several steps: analysis of the specific application,
mapping between the application and the framework, implementation
of the application classes, and test of the final application. All these
activities are supported by the pattern language. This makes it easier
for the developer to instantiate applications, as the knowledge about the
pattern language is used during the instantiation process. The proposed
approach is illustrated with the example of a framework we have built
based on a pattern language.
Keywords: Software reuse, frameworks, pattern languages, framework
instantiation.

1 Introduction

Software patterns and pattern languages aim at reuse in high abstraction levels.
Software patterns try to capture the experience acquired during software devel-
opment and synthesize it in a problem/solution form [1]. A pattern language is a
structured collection of patterns that build on each other to transform needs and
constraints into an architecture [2]. A pattern language organizes the knowledge
about a specific domain into specific patterns, that can be systematically applied
in the development of systems for the same domain. It represents the temporal
sequence of decisions that led to the complete design of an application, so it
becomes a method to guide the development process [3].

Software reuse can be achieved by several means, among which are class
libraries, software patterns and object-oriented software frameworks (from now
on called simply frameworks). In particular, frameworks allow the reuse of large
software structures in a particular domain, which can be customized to specific
applications. Families of similar but non-identical applications can be derived
? Financial support from FAPESP Process n. 98/13588-4.

?? Financial support from FAPESP/CNPq.

from a single framework. However, frameworks are often very complex to build,
understand, and use. Framework instantiation, which consists of adapting the
framework to the specific application requirements, is complex and, most times,
requires a complete understanding of the framework design and implementation
details. According to Fayad and Johnson [4], the time to learn a framework in
order to begin to use it can vary from one to one hundred days, depending on
the framework size and comprehensiveness. This factor definitely impacts the
final cost of the application and, thus, can inhibit the use of this technology.

Pattern languages and frameworks can be associated to enhance software
reuse. Pattern languages reflect experience in specific domains, covering all their
main aspects. Consequently, they have built-in information about the points
that differ from one application to another, acting as an excellent source for the
identification of the framework hot spots [5]. Moreover, a pattern language can
also be used for documenting the framework, as already shown in several works
[6,7]; for supporting the framework design and implementation [8,3]; and as a
method to guide the transformation of the framework in a concrete application
[8]. Thus, the availability of a pattern language for a specific domain and its
corresponding framework imply that new applications do not need to be built
from scratch, because the framework offers the reusable implementations of each
pattern of the pattern language. Therefore, the application development pro-
cess may follow the language graph, from root to leaves, deciding on the use of
each specific pattern and reusing its implementation offered by the framework.
Although several researchers have noticed the relationship between pattern lan-
guages and frameworks, no work exists, to the author’s knowledge, to show how
to take advantage of this fact.

In this work we show how domain specific pattern languages can be used
in the instantiation of a framework for the same domain, making the instan-
tiation process easier and more systematic. The paper is organized as follows.
Section 2 gives an overview of our approach and presents a running example.
Section 3 presents the first step of the instantiation, which consists of the sys-
tem analysis guided by the pattern language. Section 4 shows how to map the
resulting analysis model to the framework. Section 5 gives some advices about
the implementation of the specialized classes, as our proposal is aimed at white-
box framework instantiation. Section 6 provides information to properly test the
resulting application. Section 7 presents the concluding remarks.

2 Framework instantiation

Several approaches have been proposed to help in framework instantiation. They
rely on the framework documentation to obtain the necessary information to
instantiate an application, which basically consists of the framework class hier-
archy, the abstract classes that need to be subclassed in the new application, the
methods to be overridden in these classes, and examples of applications derived
from the framework. There are at least four types of approaches for framework
instantiation: framework documentation, exploration of exemplars, patterns, and

cookbooks. The first consists of studying the framework documentation, i.e., its
class hierarchy, source code, and other documents. Conventional training or spe-
cial tutorials are ways of achieving this. The drawbacks of this approach are the
time required to learn the framework and the difficulty to determine if the level
of comprehension is enough to begin to use the framework.

The exploration of exemplars consists of examining existing applications built
with the framework to identify what needs to be adapted to obtain the final
system. The drawbacks of this approach are: the difficulty to find a similar
application among the examples; what to do when a particular functionality is
not found; what to do when a particular functionality is present in an example,
but with additional features that are not needed; and the difficulty to know
when to consider the instantiation done. An example of this approach is given
by Gangopadhyay and Mitra [9].

Patterns can be used to document the framework and to show how to use it.
Three related works have been done in this line [10,8,7], but they did not proceed
towards the definition of an approach to be used by other framework developers.
This paper explores this idea and tries to support framework development and
instantiation based on pattern languages.

Cookbooks can be elaborated as a set of tasks needed to adapt a framework
to a specific application, like in a recipe. Several works have been done in this
line [11,12], but there are limitations like little flexibility, difficulty in finding the
correct recipe, and because it is unlikely that these tasks can be done step by step,
i.e., a choice made during the specialization process may change the remaining
“recipe”. Our work also uses a well defined process to guide the instantiation.

2.1 Framework instantiation based on a Pattern Language: an
overview

Our approach uses a pattern language to support framework instantiation, as
illustrated in Figure 1. It consists of four steps: system analysis, mapping between
analysis model and framework, implementation of specific classes, and test of
the resulting system. Each step is explained in detail in sections 3 to 6. The
framework must have been built based on the same pattern language using our
general process [13,14], summarized in section 2.2.

2.2 Framework Construction based on a Pattern Language

To construct a framework from a pattern language we first need to develop a
pattern language for a specific domain. The experience acquired during software
development in a domain or reverse engineering of existing systems can be used
to accomplish this. Details of how to construct the pattern language are out of
the scope of this paper, but basically it involves three steps: domain analysis,
splitting the problems found in the domain into smaller problems, and creating
a pattern to solve each of these problems.

The pattern language is then used to develop a white-box framework for that
domain. The main goal of the framework is to allow code reuse for all classes

White-box
Framework

Framework
Documentation

Requirements of a
Specific Application

Specific
System

Implementation
decisions

History of Patterns and
Variants applied

List of Analysis
Decisions

Analysis Model
with Patterns

Pattern
Language System

Classes/
methods

Design
decisions

Programming
Language

System
Analysis

Mapping
between analysis

model and
framework

STEP 1

STEP 2

STEP 3

Implementation of
specific classes

Specific
System

Test
strategy

Execution
Environment

STEP 4

Test of resulting
system

Framework
Documentation

Figure 1. Framework Instantiation Process

belonging to the pattern language. We begin by identifying the framework hot
spots, using information present in the pattern language [5]. Then, based on the
resulting list of framework hot spots and on the pattern language, the framework
is designed. We assume that the patterns of the pattern language contain a
section with the structure of each pattern. This structure is a small analysis
model for the pattern that can be used to design the framework part that takes
care of the problem solved by the pattern. Finally, the framework classes defined
in the framework design model are implemented, using a particular programming
language.

A special documentation of the framework is done to ease its future instanti-
ation to specific applications. Tables are produced to map the applied patterns
and variants to the corresponding classes of the framework that need to be
sub-classed to produce specific applications. The idea is that framework users
can easily know what needs to be done in each framework part, according to
how the corresponding pattern of the pattern language was used to model their
application.

Besides knowing which classes need to be subclassed, it is necessary to know
which methods need to be overridden in the new classes. This is necessary be-
cause a white-box framework contains abstract classes whose behavior needs to
be defined by the specialized classes, through methods called “hook methods”
by Pree [15].

A wizard to help instantiating the framework may also be developed, based
on the pattern language and on the white-box framework. This step is optional,
as it has a high cost that must be balanced against the long term gains in ease of
use. A more detailed description of the approach for constructing a framework
based on a pattern language can be found elsewhere [13].

2.3 Example of a pattern language and its associated framework

To illustrate our approach, we use the business resource management domain,
for which we have built a pattern language, denominated GRN[16], and a white-

box framework, denominated GREN[17]. At present we are building a tool to
partially automatize the instantiation process. In this paper we only use the
GREN white-box version.

The GRN pattern language was built based on the experience acquired during
development of systems for business resource management. Business resources
are assets or services managed by specific applications, as for example video-
tapes, products or physician time. Business resource management applications
include those for rental, trade or maintenance of assets or services. The GRN
pattern language has fifteen patterns that guide the developer during the anal-
ysis of systems for this domain. Figure 2 shows the relationships among the
patterns. The first three patterns concern the identification, quantification and
storage of the business resource. The next seven patterns deal with several types
of management that can be done with business resources, as for example, rental,
reservation, trade, quotation, and maintenance. The last five patterns treat de-
tails that are common to all the seven types of transactions, as for example
payment and commissions.

Figure 3 shows the Maintain the Resource pattern, extracted from the
GRN pattern language [16]. Observe that the pattern structure diagram uses the
UML notation with some modifications. We have included special markers before
input and output system operations, which are more than methods, as they are
executed in response to system events that occur in the real world. We use “?” for
input operations that change the internal state of the system, and “!” for output
operations, which generate system outputs without changing the system’s state.
Furthermore, a “#” before a method name means that its call message is sent
to a collection of objects, instead of to a single instance, i.e., it will probably be
implemented as a class method. It can be observed in the “Participants” section
that this pattern has an optional participant, Source Party, which indicates a
framework hot spot. Observe also the “Following Patterns” section, which guides
the user to the next patterns to be used.

The GREN framework was developed to support the implementation of ap-
plications modeled using the GRN pattern language. All the behavior provided
by classes, relationships, attributes, methods, and operations of GRN patterns
is available on GREN. Its implementation was done using the VisualWorks
Smalltalk [18] and the MySQL database [19] for object persistence. The first
version of the GREN framework contains about 150 classes and 30k lines of
code in Smalltalk. GREN was implemented using three layers: persistence, ap-
plication, and GUI.

Tables 1 and 2 exemplify GREN documentation, specially developed to guide
its instantiation for specific applications based on the usage of the GRN pattern
language. Table 1 is used in the creation of the concrete classes of the application
layer and Table 2 in the creation of the graphical user interface (GUI) classes.
The application classes are concerned only with the system functionality. Each
application class may have one or more corresponding GUI classes, concerned
only with input/output data aspects. Notice that these tables are built based on
the pattern language.

Table 1. Example of the GREN documentation - Table used to identify new application
classes

Pattern Variant Pattern class GREN class Ref code

1-Identify the Resource All Resource Resource N1
Default, Multiple
types

Resource Type SimpleType N2

Nested types Resource Type NestedType N2
9 - Maintain the Re-
source

All Resource Main-
tenance

ResourceMaintenance N21

Source Party SourceParty N6
Destination-
Party

DestinationParty N14

GREN has special tables listing the methods to be overridden in the newly
created classes, as exemplified in Table 3. These tables need to be followed se-
quentially, using information about the class hierarchy of the new application

QUANTIFY THE RESOURCE (2)

RESERVE THE
RESOURCE (5)

RENT THE RESOURCE (4) TRADE THE RESOURCE (6)

CHECK RESOURCE
DELIVERY (8)

MAINTAIN THE RESOURCE (9)

P AY FOR THE RESOURCE
TRANSACTION (12)

ITEMIZE THE RESOURCE
TRANSACTION (11)

IDENTIFY THE TRANSACTION
EXECUTOR (13)

QUOTE THE
TRADE (7)

QUOTE THE
MAINTENANCE (10)

IDENTIFY MAINTENANCE
TASKS (14)

IDENTIFY MAINTENANCE
PARTS (15)

IDENTIFY THE RESOURCE (1)

Group 2
Business

Transactions

Group 1
Business
Resource

Identification

Group 3
Business

Transaction
Details

STORE THE RESOURCE (3)

Figure 2. GRN Pattern Language: relationship among patterns

Pattern 9: MAINTAIN THE RESOURCE

Context
Your application deals with resource

maintenance or repair. You have already
identified and quantified these resources, which
are basically customer assets that present faults or
need periodic maintenance. They must be fixed to
be used again or to prevent them from failing
within a time interval. For example, cars,
television sets, electric appliances, and computers
are resources that often have problems during
their life cycle.

Problem
How do you manage resource maintenance

performed by your application?

Forces
• Keeping maintenance records is important

both to customers and to organizations that do
maintenance. Customers have the right to
complain if the maintenance is not
satisfactory. Parties usually need this
information for financial purposes. A simple
alternative when this information does not
need to be kept is to have a resource attribute
containing the last maintenance date.

• Extra space is needed to store maintenance
information, and having several maintenance
records related to each resource implies more
processing time to retrieve the last
maintenance.

Structure
Figure 18 shows the MAINTAIN THE

RESOURCE pattern.

*
*

 made in

* 1

Resource Maintenance
maintenance number
entry date
exit date
faults presented
status
total price
?open maintenance
?close maintenance
!# get pending mainten.
!# get maint. in the period
!# calculate earnings

Resource
idCode
description
!# get maintenances by resource

10..*
1

Source-Party
code
name
!get maintenances by source-
 party

makes asks for

Destination-Party
code
name
!get maintenances by destination-
 party

Figure 18: MAINTAIN THE RESOURCE pattern

Participants
Resource Maintenance: represents all the

details involved in maintaining a resource. The
attribute faults presented describes what is
wrong with the resource. The method open
maintenance is used to register the resource to
be repaired; close maintenance is executed
when the maintenance finishes, and get
pending maintenances retrieves maintenances
that are not finished. The attribute status
denotes the maintenance stage: pending, partially
fulfilled, or fully fulfilled.

Resource: as described in previous patterns.
Source-Party: represents the department or

branch of the organization that is responsible for
doing the maintenance. This class is optional in
this pattern because in small organizations, with
no branches or departments, it is not worth
creating it.

Destination-Party: represents the owner of
the resource being maintained as, for example, the
customer.

Example
Figure 19 shows an instantiation of the

MAINTAIN THE RESOURCE pattern for a Car Repair
Shop system.

*
*

is related to

* 1

Repair log
repair number
entry date
exit date
faults presented
status
total price
?open repair
?close repair
!#get pending repairs
!#get repairs in the period
!#calculate earnings

Vehicle
license number
color
year
status

!get repairs by vehicle

11

Repair shop branch
code
location
!get repairs by branch

makes
asks for

Customer
code
name
!get repairs by customer

Resource
Maintenance Resource

Source-Party Destination-Party

Figure 19: Instantiation of the MAINTAIN THE
RESOURCE pattern

Following patterns
Check now the other patterns in Section 2.3,

which deal with other maintenance details After,
check the convenience of using the QUOTE THE
MAINTENANCE (10) and the IDENTIFY

MAINTENANCE TASKS (14) patterns.

Figure 3. Maintain the Resource pattern

Table 2. Example of the GREN documentation - Table used to identify new GUI
classes

Pattern Variant Ref code GREN class

1-Identify the Resource Single Resource N1 SingleResourceForm
Measurable Resource N1 MeasurableResourceForm
Instantiable Resource N1 InstantiableResourceForm
Default, Multiple Types N2 StaticObjectForm
Nested type N2 QualifiableObjectForm

9 - Maintain the Re-
source

With application of patterns
14 and 15

N21 OneResourceMaintWPWTForm

Without application of pat-
terns 14 and 15

N21 OneResourceMaintNPNTForm

All N6 SourcePartyForm
All N14 DestinationPartyForm

classes to be instantiated. When a method is found that belongs to a GREN
abstract class specialized during instantiation, that method is implemented in
the specialized class. We show how to use these tables on Section 4.2.

Table 3. Examples of methods to be overridden

Super-class Method Instance/Class Comment

QualifiableObject typeClasses C returns a List with the classes that
represent the resource type (zero or
more).

ResourceMaintenance resourceClass C returns the class that represents the
resource being maintained.

hasSourceParty C returns true if the participant “Sour-
ceParty” has been used during the
instantiation and false otherwise, as
this participant is optional in the
pattern.

sourcePartyClass C returns the class name for the con-
crete class playing the role of Sour-
ceParty in the pattern. This method
is only overridden if this participant
was used during the GRN usage

destinationPartyClass C returns the class name for the con-
crete class playing the role of Desti-
nationParty in the pattern.

3 System Analysis

In this section we show how to use the pattern language to help in the analysis
of a system in the same domain (step 1 of Figure 1). The input for this analysis
is the requirements document for a specific system and the pattern language for
the same domain. The result of this step is the analysis model of the system, the
history of patterns and variants applied, and the list of analysis decisions made
when the pattern language did not match the system requirements.

The example used in this paper to illustrate our approach is of a Pothole
Tracking Repair System (PHTRS), whose requirements were established by

Pressman [20] and are reproduced here. “Citizens can log onto a Web site and
report the location and severity of potholes. As potholes are reported they are
logged withing a “public works department repair system” and are assigned an
identifying number, stored by street address, size (on a scale of 1 to 10), location
(middle, curb, etc.), district (determined from street address), and repair prior-
ity (determined from the size of the pothole), Work order data are associated
with each porthole and includes pothole location and size, repair crew identifying
number, number of people on crew, equipment assigned, hours applied to repair,
hole status (work in progress, repaired, not repaired), amount of filler material
used and cost of repair (computed from hours applied, number of people, mate-
rial and equipment used). Finally, a damage file is created to hold information
about reported damage due to the pothole and includes citizens name, address,
phone number, type of damage, dollar amount of damage. PHTRS is an on-line
system. All queries are to be made interactively.”

3.1 General guidelines

Based on the specific system requirements, the pattern language is used to model
the system. The pattern language should have been studied in advance by the
developer, so that he or she knows if it can be applied in the analysis of this
specific system. We assume that the pattern language contains analysis patterns,
each of which containing at least the usual elements of a pattern, like problem,
context, forces, and solution. In particular, the solution must contain a class dia-
gram illustrating the pattern participants. It is also desirable to have a diagram
showing the interaction among the patterns of the pattern language.

A pattern language usually has all the elements necessary for its usage. So,
even an inexperienced developer needs only to read it to obtain all the guidance
he or she needs to use it. However, we provide the following generic algorithm
to help you using a pattern language.

1. Analyze each pattern and decide whether or not to use it. This analysis
begin in the context section, where you find the elements that should be
part of your application context in order to use the pattern. If this is the
case, then analyze problem to check if it matches the problem if you have to
solve in your system. Also look at the forces to make sure they reflect the
restrictions, benefits and drawbacks you confront in your system.

2. If you decide to use the pattern, analyze the solution and possible variants
or sub-patterns. This helps you to find the best solution to your specific
system.

3. Sketch the class diagram referring to the portion of the system modeled
by the pattern. Use a different color or symbol to highlight possible new
attributes, methods or operations added to the pattern. This class diagram
will grow in a gradual way, as new patterns are applied.

4. For each applied pattern, make a special mark in the requirements document
to indicate which requirements were fulfilled.

5. For each applied pattern, use tags to indicate the roles played by each class
in the pattern.

6. Make a summary table to inform, for each applied pattern, the pattern name,
variant or sub-pattern used, and roles played by each class. This “history of
patterns and variants applied” will be useful for the future framework instan-
tiation, when you will need to figure out which framework super-classes to
specialize. The wizard we are developing supports this activity and produces
this table automatically.

7. After having applied the pattern language, check the requirements docu-
ment to find non-attended or partially attended requirements. Complement
the class diagram to fulfill them, by adding new attributes, classes, relation-
ships, methods and operations. Remember to highlight these complements
to distinguish them from the rest of the diagram. Take notes of the analysis
decisions you make here, because they are essential in the future mainte-
nance of the system. Annotate the requirements document to identify that
these requirements are not covered by the pattern language.
The result of this step is the system analysis model, the list of decisions
made during analysis, and the history of patterns applied.

3.2 Example

The PHTRS requirements were analyzed using the GRN pattern language, pro-
ducing its analysis model, shown in Figure 4. Tags were included to show the
patterns used to model the system. A tag shows the role played by the class it
points to. Its format is “P#n: role”, where “n” is the pattern number and “role”
is the role played by the class in that pattern. Notice that we do not represent
canonic methods and operations.

During the analysis, a match has to be done between the pattern attributes,
methods and operations versus the concrete class attributes, methods and op-
erations, as recommended in the third step of Section 3.1 algorithm. For the
PHTRS example, some additional attributes were added, as for example the
attribute numberOfPeopleOnCrew (WorkOrder class).

Table 4 was built to show the seven patterns used during the instantiation,
together with the roles played by each application class. During the application
of pattern 1 - Identify the Resource, it was obvious that Pothole was the
resource managed by the application. We considered Pothole as a multiple-typed
resource, as we may need to list potholes by district, by size, by location or by
citizen. When applying pattern 2 - Quantify the Resource, we decided that
a pothole is unique, so we have chosen the Single Resource sub-pattern (other
options, like resources that are measured, instantiated or dealt with by lots were
not adequate in our case). After having skipped patterns 3 to 8, because our
application was not concerned with resource storage, rental, reservation, trade,
quotation or delivery, we have applied pattern 9 - Maintain the Resource -
which allows resources to be maintained. We decided to assign the role of “Desti-
nation Party” to the “Public Works Department” and not to use the aspasSource
Party participant, because the “Public Works Department” plays both roles in

this case: it asks for a pothole repair and does the repair itself. Then, we have
skipped patterns: 10, because the system does not concern maintenance quota-
tion; 11, because each work order refers to only one pothole; and 12, because the
system is not worried about payments associated to the work order. We have
applied pattern 13 - Identify the Transaction Executor, as the system
refers to the repair crew responsible for the work order. After that, we have ap-
plied pattern 14 - Identify the Maintenance Tasks, to deal with the several
tasks associated with the work order, followed by pattern 15 - Identify the
Maintenance Parts, which takes care of specifying the several materials used
in the repair.

Public works department

 !#listInAlphabeticOrder()
 !#list work orders by department()

 idCode : integer
 name : string

Repair Crew

 !# list work orders by repair crew()

 idCode : integer
 name of members : string

Pothole

 !#list by Street Address()
 !# list by District()
 !# list by Size()
 !# list by Location()
 !# list damages by pothole()

 idNumber : integer
 address : string
 status : boolean

WorkOrder

 ?open Work Order()
 ?close work order()
 !#list pending work orders()

 workOrderNumber : integer
 beginDate : date
 endDate : date
 faultsPresented : string
 costOfRepair : float
 numberOfPeopleOnCrew : integer1

0..n

0..n

P#9, P#14, P#15:
Resource Maintenace

P#13: Transaction

P#9: Destination-Party

P#1: Resource
P#2: Single Resource

P#9: Resource
P#6: Resource

P#6: Reource Trade

P#13:
Transaction

Executor

District

 code : integer
 name : string

P#1: Resource
type

1..1 1..1

made in >

0..n
1..1

Size

 code : integer
 description : string
 repairPriority : integer

P#1: Resource
type

Location

 code : integer
 description : string

P#1: Resource
type

Citizen

 !# list damages by citizen()

 code : integer
 name : string
 address : string
 phoneNumber : integer

P#1: Resource
type

P#6: Destination
Party

0..n

1..1

< is made by

0..n 1..1

0..n 1..1

0..n

1..1

0..n

Repair Task

 !# list tasks by repair crew()

 problem to solve : string
 labor description : string
 hours applied to repair : string
 cost of repair : float

Material used to repair

 quantity : float
 cost : float

Material

 !# list by name()
 !# list out of stock()

 idCode : integer
 name : string
 quantity in stock : float

0..n

1..1

is a
 V

is reported by
 V

P#15: Part

P#15: Part used
in maintenanceP#14: Maintenance

task

Damage File

 ? register damage()
 ? cancel damage()
 !# compute total damages in the period()
 !#list damages in the period()

 damageNumber : integer
 date : date
 status : boolean
 dollar amount of damage : float
 type of damage : string

0..n

1..1

0..n

1..1

 ^
is related to

 ^
is related to

asks for >

Figure 4. PHTRS Analysis Model with Patterns

Table 4. History of patterns used in the instantiation (TH)

Pattern Variant Participant Application Class

1-Identify the Resource Multiple types Resource Pothole
Resource Type District
Resource Type Size
Resource Type Location
Resource Type Citizen

2 - Quantify the Resource Single Resource Resource Pothole
9 - Maintain the Resource No source party Resource Pothole

Resource Main-
tenance

Work Order

Destination-
Party

Public works depart-
ment

13 - Identify the Transaction
Executor

No commissions Transaction Ex-
ecutor

Repair Crew

Transaction Word Order
14 - Identify Maintenance
Tasks

Transaction executor in-
stead of task executor

Resource Main-
tenance

Work Order

Maintenance
Task

Repair Task

15 - Identify Maintenance
Parts

Default Resource Main-
tenance

Work Order

Part used in
Maintenance

Material used to repair

Part Material
6 - Trade/Use the Resource No source party Resource Pothole

Resource Trade Damage File
Destination-
Party

Citizen

At this point, the only requirement not attended by the framework was the
damage file creation. If we analyze the semantic of the GRN patterns, we do not
find a pattern to address this requirement, as we want to log the damages caused
to citizens due to the pothole and this is not a rental, trade or maintenance
transaction. However, if we analyze the patterns syntax, we see that the Resource
Trade class has similar attributes to those we are looking for to our damage file.
Like in a trade (sale or purchase), we need a date (the damage date), a status
(was the dollar amount paid or not?), a value (the dollar amount), and some
observation (the type of damage). Also, like in a trade, we need to link the
damage file to a destination party (the citizen) and to a resource (the pothole).
So, we decided to use pattern 6 - Trade the Resource, to model the damage
file. This enabled us to use the GREN framework in a way not envisioned by its
designers, which is called “flexing” or “domain abstraction” by Butler et al [21].
The pre-condition for flexing is that the pattern has the required computational
structure, although it does not carry the domain semantics anticipated by the
designer. We call this “semantic/syntatic replacement process”, and note it in
Table 4 by the general Use the Resource pattern.

The result of this step is the PHTRS analysis model (Figure 4) and the
history of patterns used in the instantiation (Table 4). We do not have a list
of analysis decisions made, because GREN supported all the functionality we
needed for PHTRS. If we had included additional classes or relationships, not

covered by GREN, then we would need to highlight this fact to ease future
implementation and maintenance of the resulting system.

4 Mapping between the analysis model and the
framework

In this section we show how to map the resulting analysis model to the framework
(step 2 of Figure 1). The input for this mapping is the analysis model of the
system, the history of patterns and variants applied, the list of analysis decisions
made, and the framework documentation. We consider that the framework was
documented according to the guidelines we suggest when building a framework
based on a pattern language, i.e., the relation between the patterns of the pattern
language and the framework classes is properly documented. The output of this
step is a list of framework classes and corresponding methods to be implemented.

4.1 General guidelines

The procedure to be followed when mapping the analysis model to the framework
is specific of each pattern language/framework pair. The following algorithm tries
to abstract the most important activities to perform this mapping.

1. Consider the “history of patterns and variants applied” created during sys-
tem analysis (item 6 of section 3.1) that contains, for each applied pattern,
the variant or sub-pattern applied and the roles played by each class. Let us
call this table TH. For each row of TH, let P be the applied pattern, V be
the variant or sub-pattern applied, A be the application class, and R be the
pattern class, so that A is playing the role R in pattern P/variant V.

2. Create a table that will contain the classes to be created in the new system.
Let us call this table TC. This table has four columns: application class,
class to create, framework super-class, and new attributes.

3. For each row of TH, check the framework documentation to find which classes
are required in the new system for A, given the keys P, V and R. The result
is the superclass names, of which A will inherit from. Create a row in TC
for each new required class. There may be cases in which several classes are
created corresponding to A (see example in Table 5). The new attributes’
column is filled in with the attributes that were highlighted in the analysis
model.

4. Consider now the resulting TC. For each row of TC, examine the frame-
work documentation to identify which methods need to be overridden and
define the contents of such methods. Also define the methods necessary to
implement new attributes/operations, defining their functionality.

The result of this step is a list of new classes and methods to be implemented
in the next step.

4.2 Example

The mapping between PHTRS and the GREN framework was done using the
special documentation provided by the GREN framework. As mentioned in Sec-
tion 2, this documentation consists of several tables showing, for each pattern
of the GRN pattern language, the corresponding GREN classes to inherit from
and the methods to be overridden during instantiation.

Based on Table 4 (TH), Table 1 of GREN documentation was used to iden-
tify the new application classes to be created, and Table 2 to identify the correct
GUI form to be specialized. The result is partially shown in Table 5 (TC). Table
1 and Table 2 are used in the following way: Match the first three columns of
TH with the first three columns of Table 1. The result is a GREN class to be
specialized, so add a new row to TC, in which the application class is the fourth
column of TH, the class to be created has the same name, and the GREN su-
perclass is the fourth column of Table 1. Use the reference code (fifth column
of Table 1) to search Table 2, using TH to match the appropriate GREN class,
according to the pattern and variant applied. If a match is possible, then a new
row is added to TC, in which the application class is the fourth column of TH,
the class to be created has the same name with a special suffix to distinguish
it from the application class (we have used the “Form” suffix in PHTRS), and
the GREN superclass is the fourth column of Table 2. For example, the Pothole
application class (ref code=N1) inherits from Resource and has a corresponding
PotholeForm GUI class, inheriting from SingleResourceForm, because Pothole
is a SingleResource. The WorkOrder application class (ref code=N21) inher-
its from ResourceMaintenance and has a corresponding WorkOrderForm GUI
class, inheriting from OneResourceMaintWPWTForm, because patterns 14 and
15 were applied during instantiation.

Table 5. Classes to be created in the PHTRS system (TC)

Application Class Class to create GREN super-class Additional Attributes
Pothole Pothole (N1) Resource

PotholeForm SingleResourceForm
Size Size (N2) SimpleType repairPriority

SizeForm StaticObjectForm
Work Order WorkOrder (N21) ResourceMaintenace numberOfPeopleOnCrew

WorkOrderForm OneResourceMaintWPWTForm
Citizen Citizen (N14) DestinationParty address, phoneNumber

CitizenForm DestinationPartyForm

The next phase is to examine the hook methods to be overridden in the newly
created classes. For example, Table 3 shows a sample of a GREN table with the
information about hook methods. In order to better understand the concept of
hook methods, consider Figure 5, which shows part of the GREN class hierar-
chy. All classes that contain methods in italics are abstract classes, and these
methods need to be overridden in specialized classes, so they appear in Table
3. In fact, some of them are optionally overridden, depending on the framework

usage. For example, the method hasSourceParty of the abstract class Business-
ResourceTransaction needs to be overridden, while the method sourcePartyClass

is optional, depending on whether the “Source Party” participant of the pattern
Maintain the Resource (Figure 3) was used. This information is not repre-
sented in the diagram, so we have decided to use a table to show the mapping
and to give a better explanation of the method usage.

5 Implementation of the specific classes

In this section we give some advices about the implementation of the specialized
classes (step 3 of Figure 1). The input for the implementation is the list of classes
and methods obtained in step 2 and the programming language (the same used
for the framework implementation). The output is the new application code.

5.1 General guidelines

The implementation of the new classes and corresponding methods require knowl-
edge about the programming language in which the framework was developed.
Some guidelines:

1. Begin by creating all the classes identified during the mapping, and their
corresponding methods.

2. Create additional attributes and the necessary methods.
3. Create the GUI for the main window, together with a menu to be executed

by the end user. This menu should contain shortcuts to all system operations.
4. Finally, compile the new application.

5.2 Example

The GREN documentation offers several algorithms used in the new classes
creation, adaptation of the GUI to include new attributes, and production of the
new system menus. Smalltalk VisualWorks must be used, which is the language
in which GREN was implemented. The result is the specific application code,
illustrated in Figure 5. The resulting number of lines of code for the PHTRS
example was 1600 (1,6K LOC). It is important to observe that this new code
refers only to the class declarations, overridden methods, and definition of new
GUI forms (visually programmed). The GREN framework code, which is about
30K LOC, needs to be integrated to the final application, because it contains
the basic superclasses that allow the system working.

Figure 5 illustrates some hook methods that were overridden in the PH-
TRS example. For example, the Pothole class inherits from Resource, which in
turn inherits from QualifiableObject. So, according to Table 3, the typeClasses

method needs to be overridden. See the comments column on Table 3 to know
how these methods have been coded. It is also necessary to add methods to deal
with new attributes added to the classes, as for example repairPriority in class

Size. In GREN, the cookbook defines which methods need to be overridden in
this case: accessing methods (set and get), initialization methods, and placement
of new widgets in the GUI form.

Figure 6 shows the main menus for PHTRS, where you can observe part of
the functionality stated in the requirements (see section 2.2). All reports that

0..1

1*

0..1

*

 made in

* 1

Basic Maintenance
faultsPresented

hasParts()
hasTasks()

Resource
quantification

isStored()

PersistenObject
isChanged
isPersisted
create
read
update
delete

Destination-Party

BusinessResourceTransaction
number
date
observation
status
totalPrice
resourceClass()
hasSourceParty()
sourcePartyClass()
destinationPartyClass()
. . .

StaticObject
idCode
description

Source-Party

MaintenanceQuotation
expirationDate

Resource Maintenance
exit date

hasQuotation()
quotationClass()
. . . 0..1

WorkOrder
numberOfPeopleOnCrew

resourceClass()
hasSourceParty()
destinationPartyClass()
hasParts()
hasTasks()
hasQuotatation()
. . .

QualifiableObject
qualification
typeClasses()

Pothole

isStored()
typeClasses()

Citizen

Framework

Application

^List with: District with: Size
with: Location with: Citizen

^Pothole

^false

^PublicDept

PublicDept

Figure 5. Part of GREN Class Hierarchy and derived classes in the application

appear in the menu are supplied by GREN, for free. Notice that only a few
reports were added to the menu, but GREN offers a number of other reports
through buttons in the GUI forms. For example, when a Pothole is edited, there is
a special button in the GUI form that allows reports to be generated of potholes
by address order, by district, by identification code, by location etc.

Figure 6. PHTRS Menus

6 Test of the resulting system

In this section we provide some useful information to properly test the resulting
application (step 4 of Figure 1). The input for the test is the compiled application
code, in the form of classes and methods, the framework documentation, an
environment to execute the code, and a test strategy. The output is the tested
application code to be deployed.

6.1 General guidelines

The resulting system needs to be tested to ensure both that the requirements
have been fulfilled and that the system works in the end user environment. Some
observations that need to be taken care of are:

1. Check the framework documentation about the persistence mechanism, in
order to know how to create the new database.

2. Follow the instructions of the particular framework to install an executable
version of the new system.

3. Use a test strategy to exercise your system and ensure that the requirements
have been fulfilled.

6.2 Example

In the case of the GREN framework, the testing step requires the installation
of the framework software at a client machine, and the creation of a MySQL
database with all the relational tables involved in the patterns used during in-
stantiation. The GREN cookbook has a special section to help its users to create
such tables. For the PHTRS example, after creating the MySQL tables, a set of
test cases was created to exercise the system. We have executed the menu op-
tions of Figure 6 at least for three new objects each and the result has matched
the requirements.

We have spent about 9 hours to obtain the final PHTRS system (2 hours
with analysis, 1 hour with mapping, 4 hours with implementation, and 2 hours
with testing). We have written about 1600 lines of code to adapt GREN to
this specific example. These numbers are very low if we consider the number of
Function Points (FP) [22,23] of the resulting system, which is about 370 (we have
used an adjustment factor of 0.9 to calculate the function points). To obtain the
same functionality by programming the applications from scratch would require
at least five times more lines of code than it actually did using the framework,
considering that Smalltalk requires twenty-one lines of code per function point
[24]. Moreover, most of the programmed code consists of methods to deal with
new attributes included in the classes, which were not part of the patterns. For
example, for each new Citizen attribute, there is the corresponding code in the
application class to set, get, and initialize it, and there is also code in the user
interface class to allow its edition in the input forms. Besides, part of the code is
automatically generated by visual programming. This occurs for the GUI forms
that were adapted to the specific applications, for example by moving widgets to
the appropriate place. Thus, the code that needs to be created is much simpler
compared to the application code.

7 Concluding remarks

The approach here proposed intends to ease framework instantiation using pat-
tern languages. Frameworks built using our approach have its architecture influ-
enced by the pattern language, which eases the instantiation of new applications.
With the special documentation provided by our approach, framework users ba-
sically need to know about the pattern language usage in order to instantiate
the framework. No technical knowledge about the framework class hierarchy or
implementation details are necessary for using the framework main functional-
ity. The novel aspect of our proposal is to use the pattern language to allow a
smooth transition from analysis to implementation of specific applications. By

identifying the patterns that fulfill the requirements of a specific application it
is possible to use the framework to implement that application. Our process is
general, but a pattern language needs to be developed before the framework
construction.

We have used GREN to develop several systems, among which are a car
repair management system, a sales system, and a video rental store. We have also
conducted a case study with undergraduate students to implement a car rental
and a hotel system. GREN attended the functionality of all these systems. With
the case study presented in this paper it was also possible to confirm that GREN
can be used to model aspects not envisioned before: by examining the syntax
aspects of the patterns, we can achieve even more reuse than if we consider
only the semantic aspects. This is coherent with Johnson’s statement that “a
good framework will be used in ways that its designers never conceived” [7]. The
system performed well for this flexing usage, avoiding having to program this
part from scratch.

Although we have tested our approach only for small applications, with about
10 to 20 application classes each, we believe that it scales well for larger appli-
cations. Due to the intrinsic characteristics of patterns, which allow the devel-
opment of complex systems by partitioning them into smaller units, pattern
languages can be extended by adding new patterns to cover more and more
aspects of the domain.

We are aware that GRN and GREN cover a restrict domain inside informa-
tion systems, but our approach can be adapted to allow its usage in a wider
variety of domains. Scalability for other computer science areas other than in-
formation systems could be an object of future research.

Another important result of our approach is that the framework user knows
exactly where to begin the instantiation, as the pattern language guides her/him
through the several parts that need to be adapted in the framework hierarchy.
This solves a common problem of other approaches mentioned in Section 2,
because here the instantiation is focused on the functionality required, with a
clear notion of which requirements are attended by each pattern.

References

1. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1994.

2. J. O. Coplien. Software Design Patterns: Common Questions and Answers, pages
311–320. Cambridge University Press, January 1998. in L. Rising - The Patterns
Handbook: Techniques, Strategies, and Applications.

3. D. Brugali, G. Menga, and A. Aarsten. A Case Study for Flexible Manufacur-
ing Systems, pages 85–99. Domain-Specific Application Frameworks: Frameworks
Experience by Industry, M. Fayad, R. Johnson, –John Willey and Sons, 2000.

4. M. E. Fayad and R. E. Johnson. Domain-Specific Application Frameworks: Frame-
Works Experience by Industry. John Wiley & Sons, New York, USA, 2000.

5. R. T. V. Braga and P. C. Masiero. Identification of framework hot spots using
pattern languages. In 15th Brazilian Symposium on Software Engineering, pages
145–160, Rio de Janeiro-Brasil, October 2001.

6. A. Aarsten, D. Brugali, and G. Menga. A CIM Framework and Pattern Language,
pages 21–42. Domain-Specific Application Frameworks: Frameworks Experience
by Industry, M. Fayad, R. Johnson, –John Willey and Sons, 2000.

7. R. E. Johnson. Documenting frameworks using patterns. In OOPSLA ’92, pages
63–76, 1992.

8. D. Brugali and G. Menga. Frameworks and pattern languages: an intriguing rela-
tionship. ACM Computing Surveys, 32(1):2–7, March 1999.

9. D. Gangopadhyay and S. Mitra. Understanding frameworks by exploration of
exemplars. In International Workshop on C.A.S.E, IEEE, July 1995.

10. K. Beck and R. Johnson. Patterns generate architectures. In European Conference
on Object-Oriented Programming, pages 139–149, Bologna, Italy.

11. W. Pree, G. Pomberger, A. Schappert, and P. Sommerlad. Active guidance of
framework development. Software - Concepts and Tools, 16(3):136–, 1995.

12. A. Ortigosa and M. Campo. Towards agent-oriented assistance for framework in-
stantiation. In Proceedings of ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, October 2000.

13. R. T. V. Braga and P. C. Masiero. A process for framework construction based on
a pattern language, 2002. submitted to the 26th Annual International Computer
Software and Applications Conference on February 2002.

14. R. T. V. Braga and P. C. Masiero. Frameworks construction and instantiation
using pattern languages, 2002. accepted for publication in the proceedings of the
International Conference on Computer Science, Software Engineering, Information
Technology, e-Business, and Applications, ACIS, Foz do Iguazu-Brazil.

15. W. Pree. Hot-spot-driven Development, pages 379–393. Building Application
Frameworks: Object-Oriented Foundations of Framework Design, M. Fayad, R.
Johnson, D. Schmidt, –John Willey and Sons, 1999.

16. R. T. V. Braga, F. S. R. Germano, and P. C. Masiero. A pattern language for
business resource management. In 6th Pattern Languages of Programs Conference
(PLoP’99), Monticello – IL, USA, 1999.

17. R. T. V. Braga. GREN: A framework for business resource management.
ICMC/USP – Sao Carlos, August 2001. Unpublished, Available on August, 2001
at: http://www.icmc.sc.usp.br/~rtvb/GRENFramework.html.

18. Cincom. Visualworks 5i.4 non-commercial, 2001. Available for download on
September 25, 2001 at: http://www.cincom.com.

19. MySQL. MySQL 3.23 version, 2001. Available for download on September 25,
2001 at: http://www.mysql.com.

20. R. S. Pressman. Software Engineering - A Practitioners Approach, 5th ed. McGraw
Hill, 2001.

21. G. Butler, R. Keller, and H. Mili. A framework for framework documentation.
ACM Computing Surveys, 32(1), March 2000.

22. A. J. Albrecht. AD/M Productivity Measurement and Estimate Validation. IBM
Corporate Information Systems, Purchase-NY, USA, 1984.

23. C. Jones. Applied Software Measurement. McGraw Hill, New York, USA, 1991.
24. C. Jones. Preliminary Table of Languages and Levels. Software Productivity Re-

search Inc., Burlington, Mass., USA, 1989.

