 Legacy Systems Reengineering Using Software Patterns

Paulo Cesar Masiero

ICMC-University of Sao Paulo

C. P. 668, 13560-970

Sao Carlos – SP - Brazil

Phone: 00-55-16-273-9701

Fax: 00-55-16-273-9751

e-mail: masiero@icmc.sc.usp.br
Rosana T. Vaccare Braga

ICMC-University of Sao Paulo

e-mail: rtvb@icmc.sc.usp.br
Abstract

In this work we present a case study for legacy systems reengineering using software patterns aiming at both easing the reengineering process and improving future maintenance. The approach used consists basically of three steps: apply reverse engineering, if necessary, to obtain an object model of the system; recognize software patterns present in the object model obtained; and re-implement the system in a more productive way, using toolkits or specific frameworks that implement the patterns found. Results of some experiments show that reengineering has been facilitated as well as system maintenance, because components became clearly delimited and larger chunks of design may now be understood as a whole and reused.

Keywords: Software Reengineering, Software Patterns, Legacy Systems, Reverse Engineering

1. Introduction

Many organizations have legacy systems that are kept running, even with a high maintenance cost, because they are valuable to them and contain business rules that are difficult to be recovered in an eventual reengineering effort [21]. Reverse engineering is an answer to this problem and, after it, reengineering should be conducted to make source code compatible with the models produced, thus improving system maintainability.

The value of patterns is widely recognized, both in forward engineering and in reengineering. In forward engineering they provide a common design vocabulary, as designers can talk in a higher level of abstraction than that of a design notation or programming language [12]. In reengineering they may help in the reorganization or refactoring of a design, solving problems in code understanding and giving hints for the new architecture [11]. Locating patterns in software built without its explicit use can improve maintainability, as larger chunks of code may be understood as a whole and reused [16].

In this paper we present a case study of legacy systems reengineering after the recognition of software patterns in their object oriented analysis model. The approach used is based on results obtained by the authors in pattern identification as Coad’s patterns Behavior-Across-a-Collection and State-Across-a-Collection [6]; Johnson’s Type-Object pattern [14]; and Boyd’s Association-Object pattern [1], in different applications on the information systems domain. The case study discussed here refers to a car repair shop system, with the recognition of a family of patterns for business resource management previously presented by the authors [4].

This work is organized as follows. In section 2 the overall approach used is described. In section 3 the case study is presented. In section 4 concluding remarks are presented.

2. The approach used to do the software reengineering using software patterns

Although software patterns are widely accepted as a way to improve software development, not many works have been published focusing on the use of patterns in reengineering. Our work aims to gain more adepts in patterns utilization with reengineering purposes.

We use an overall process to do procedurally developed legacy information systems reengineering obtaining an object oriented architecture, using patterns to accelerate the re-implementation phase. The process consists of three phases, illustrated in Figure 1.

The first phase is responsible for obtaining the System Object Model, if it is not already available by other means. It can be recovered by a reverse engineering process that can be done manually or supported by an automated tool [23, 24, 25]. Rigi, to retrieve a program structure, is such a tool [27], as well as tools for program comprehension [2, 20] and for database retrieval [13]. It is important to choose an object oriented reverse engineering process, i.e., the resulting models obtained through reverse engineering must be object oriented ones.

Figure 1. Approach used

In the second phase software patterns recognition is done based on the System Object Model obtained in phase one. Depending on the particular system domain and on the available toolkits and frameworks, several patterns can be searched for. This step can also be done with tool support, matching pattern structures with the system object model [16]. Developing such tools is a promising research topic.

Pattern catalogs [8, 10, 12, 19, 26] should be consulted in order to identify which of them might occur in the particular domain. After some reengineering experiments the organization is able to have its own pattern catalog, where the most frequently found patterns are documented. It is also possible, after some experience, to develop a strategy for the identification of these patterns, that could be followed by software engineers when reengineering other systems [5].

In the third phase of the approach used, toolkits or frameworks are used in the re-implementation of the system in a more productive way than if it were done from scratch. Toolkits and frameworks are being developed recently to facilitate software development. Using them, the developer can easily build a new application by combining software components according to specific needs. Not all the patterns recognized in the second phase can be implemented with the support of a toolkit or framework. Some of them may need to be programmed from scratch. But this is a good opportunity for the enhancement of the organization’s library of patterns.

Before the system re-implementation, software engineers must evaluate whether to change or not the original system functionality. Patterns bring with them the behavior of their composing classes and relationships. If the legacy system functionality must be preserved, some methods included within the pattern definition may have to be ignored. However, some of these methods may be welcome in the reengineered system. This aspect must be analyzed carefully by software engineers, as new methods may enhance the final system.

Why is it better to recognize patterns from object models? Most patterns related to the information systems domain have a sketch expressed using one of the object oriented notations. Thus, it is easy to find a pattern occurrence comparing the classes present in the legacy system object model with those present in the pattern structure.

Trying to find patterns directly in the source code is possible [15, 16, 18], although patterns with higher level of abstraction almost always get lost in the implementation details. The approach used allows the recognition of analysis and design patterns before they are implemented in a particular programming language. This eases maintenance and reuse, because patterns are in a higher abstraction level than objects and classes. Moreover, the greater compatibility between the design models and the final software components is essential to a better maintainability.

3. Case Study

In this section we present a case study of a real system that has about twenty thousand lines of Clipper code. The system deals with the administration of the services done in a mechanic and electric car repair shop, also doing stock control and re-supply of the parts used in the repairs. The customer goes to the shop to ask for services in his/her vehicle. A customer may have several vehicles. The same vehicle can return to the shop many times and a distinct customer order is issued in each visit. This order contains data about the customer, the vehicle and the services to be done. When the service is completed, the parts used and the work performed are recorded. Sometimes the repair may need parts that do not exist in stock. These are acquired outside the shop and are included in the customer order. To record these parts is important to management, as they are candidates to be stocked. The possible vehicle models are recorded in the system, as there are tables of labor rates prepared according to the vehicle model and the type of labor. Over the counter sale of parts is also done.

3.1 – Reverse Engineering of the legacy system

The car repair shop system was originally developed using the procedural paradigm. Its documentation consisted of relational models of the database. Reverse engineering had to be executed in the legacy system in order to produce its object model. In this particular experiment, we could not use the tools available for reverse engineering, as they do not accept Clipper code as input. Thus we have used the overall process Fusion/RE [22], that does object oriented reverse engineering from systems originally developed through the procedural paradigm. The result of the reverse engineering is an object oriented analysis model of the system. Part of this model, namely the System Object Model, is shown in Figure 2. This model is expressed according to the UML notation [9]. More details about the reverse engineering conducted are available in the world wide web [3, 5].

3.2 . The recognition of Patterns in object models

As stated in section 2, to take advantage of reengineering with patterns, organizations should have catalogs with the patterns that occur frequently in their specific domain. In our particular example, there are several patterns proposed in the literature that could be used. The next section describes our choice.

3.2.1. Overview of the patterns to be recognized. The software patterns recognition described in this work is based on a family of patterns for business resource management [4] formed by recurring patterns originally proposed by Coad [6], Fowler [10], Johnson [14] and Boyd [1]. This family comprises the Resource Rental Pattern, the Resource Trade Pattern and the Resource Maintenance Pattern, which are briefly described next.
Many business systems deal with the rental of business resources for a certain period of time after which they are returned to their owners. The Resource Rental Pattern [4] describes a solution to this problem and its application covers business systems as, for example, library service, medical attendance, video rental, real estate rental and show box office.

Another common situation in many business systems is the transference of property of a resource. This involves sales and purchases in which a resource trade is done and someone has to pay for it. The Resource Trade Pattern [4] presents a solution to this problem and its application covers business systems like motor vehicle dealers, retail stores, etc.

The repair or maintenance of resources is the goal of many business systems. The resource can have a problem or defect that needs repairing. The Resource Maintenance Pattern [4] gives a solution to this problem and its application covers business systems as, for example, car repair shops and electronic appliance repair shops.

Due to space restrictions, we present in this paper only the structures of the patterns Resource Maintenance (Figure 3) and Resource Trade (Figure 4), as these patterns are recognized in the example shown in the case study. The complete description of all the patterns of the family can be easily accessed via the world wide web [4].

3.2.2. A strategy for recognition of the chosen patterns. The following strategy for recognition of the patterns of the family was obtained after making the recognition of these patterns in several information systems.
We stress that each specific pattern must be studied and applied to as many systems as possible until we can formulate a strategy to its recognition. If a strategy is not available, the occurrence of the pattern can be verified through a careful examination of its documentation, usually organized into problem, context, forces, solution and structure sections.

Based on the system object model, the following steps can be considered for recognizing the family patterns:

[image: image1.wmf]*

*

*

*

*

1

*

0..1

*

*

1

1

 is a

 is a

*

1

produces

1

0..1

refers to

*

*

1

1

done to

done to

*

*

works

with

*

*

*

*

*

*

is

adaptable to

*

is

adaptable to

*

*

is

part

of a

*

*

*

*

has work

value

according

to

 done by

has service

time

according

to

*

1

is of

 done by

0..1

equivalent to

*

*

1

has a

*

made by

*

1

1

produces

*

1

*

*

1

1

*

 is a

1

*

 serviced by

needs

Customer Order

Number

Entry Date

Faults presented

Total Cost

Completion Date

Customer

Code

Name

Address

Telephone

CustomerVehicle

License Number

City

Part used in Customer Order

Quantity

Cost

Service done in

Customer Order

Cost

Part

Description

Cost

Price

Employee

Code

Name

Address

Specialty

1

 Type of Vehicle

Mark

Category

Part acquired outside

Code

Purchase place

Part in-stock

Bar Code

Qtty in stock

Localization

Accounts

Due Date

Payment Date

Installment number

Value

Status

Over the Counter Sale

Number

Date

Total Cost

Part sold

Quantity

Cost

is a

produces

Accounts Receivable

Accounts Payable

Manufacturer

Code

Name

owns

Service Type

Code

Labor description

Component

Code

Description

Request

Number

Date

Status

Part requested

Quantity

Unit cost

Purchase

Number

Date

Total Cost

Vendor Name

Taxes Values

Part purchased

Quantity

Unit cost

Unit

disccount

Supplier

Code

Name

Fax Number

Vendor name

Trade Line

Code

Description

Figure 2 - Object Model for a Car Repair Shop

Figure 3. Structure of the Resource Maintenance Pattern

1) each class has to be examined to find the possible candidates to the business resource role. If the class represents merchandizes, services or people it can be included in the list of candidates,

2) each of the candidates selected in step 1 is examined to discover the existence of a transaction involving it. All the patterns of the family deal with transactions that can be of three types: rental, trade or maintenance. So, in this step we have to identify the class representing the transaction itself. A hint that a class represents a transaction is the presence of a date among its attributes. If such a class is found relating the resource to a beneficiary, like a customer or a supplier, then the occurrence of one of the family patterns is probably present. If no transaction is present, the candidate is discarded,

3) having identified the resource and the transaction, another analysis has to be done. If the transaction refers to purchase or sale of good, we can focus our attention on the Resource Trade Pattern. If the transaction refers to the use of goods, without transference of property, the Resource Rental Pattern can be searched. If the transaction refers to the maintenance of goods, then the

Resource Maintenance Pattern may occur. The source-code and the knowledge about the domain are essential to this analysis,

4) after recognizing the occurrence of one pattern of the family, the relationships among the classes already identified with other classes has to be studied, in order to identify the core components of the pattern,

5) after that, search can be done for the alternative components of the pattern. Here, also, knowledge about the domain is vital.

In steps 4 and 5 of this strategy we consider that the core components of a pattern are the classes that occur in every possible instance of the pattern, while alternative components are classes that may not appear in some of its instances. For example, the core part of the Resource Trade Pattern (Figure 4) is composed of classes Destiny-Party, Trade Transaction, Resource Traded, Resource and Payment. The other classes, namely Source-Party, Resource Request, Resource Requested and Type of Resource are alternatives to be considered in each particular application.

[image: image2.wmf]*

*

*

1

1..*

0..1

1..*

1..*

1

1

*

1

*

1

0..1

0..1

1

Trade Transaction

Date

Vendor Name

Observations

Include transaction

Cancel transaction

Get transaction by vendor

1

*

Destiny-Party

Code

Name

Set

Get

Get transactions by party

Get requests by party

Resource Request

Request Date

Situation

Vendor Name

Observations

Make Request

Cancel Request

Get non-attended

requests

Resource

Code

Description

Quantity in stock

Set

Get

List by type

Payment

Due Date

Payment Date

Installment number

Value

Situation

Coming installments

Overdue payments

Payment done

Type of Resource

Code

Description

Set

Get

*

Resource Traded

Quantity

Value

Set

Get

Resource Requested

Quantity

Estimated Value

Set

Get

Source-Party

Code

Name

Set

Get

Figure 4. Structure of the Resource Trade Pattern

3.2.3. Recognition of patterns in the car repair shop case. In the object model of Figure 2 two patterns of the family described in section 3.2.1 have been recognized: two instances of the Resource Trade Pattern and one instance of the Resource Maintenance Pattern. The object model with the patterns that were recognized is shown in Figure 5.
The notation used in Figure 5 is that suggested by UML [9] to express patterns, using parameterized collaborations. The pattern name is placed in a dashed ellipse. A dashed arrow is drawn for each of the several pattern components. The boxes contain the classes of the system being instantiated. They play the role represented by the dashed arrow that points to it.

Following the steps of the strategy for recognizing the patterns of the family established in section 3.2.2, first all the classes of the object model of Figure 2 were examined, resulting in the following list of candidates to the resource role: “Customer Vehicle”, “Employee”, “Component” and “Part”. The relationships of these candidates with other classes were then examined and two of them, namely “Customer Vehicle” and “Part”, had transactions relating them to a beneficiary. In the former, there are two transactions (“Over the Counter Sale” and “Customer Order”) relating “Customer Vehicle” to the beneficiary “Customer”. In the latter, there is the transaction “Purchase” relating “Part” to the beneficiary “Supplier”. The candidate “component” has no associated transactions. The candidate “Employee” has associated transactions, but they do not relate it to a beneficiary, as expected by rule number two of section 3.2.2.

After this, the transactions identified in the previous step were analyzed. The “Over the Counter Sale” transaction is typically a sale of parts made to a customer. This recognition is straightforward, as the name of the transaction contains the word “sale”. So the Resource Trade Pattern can be used here. The “Customer Order”

[image: image3.wmf]Payment

Destiny

party

Resource

requested

Resource

Request

Resource

traded

Trade

Transaction

Type

of

Resource

Resource

Part

Part

used

in

Maintenance

Resource

Maintenance

Maintenance

Task

Payment

Type

of

Resource

Maintenance

Executor

Resource

Customer

Type

of

Resource

Resource

Payment

Destiny

Party

Resource

Traded

*

1

*

0..1

works

with

*

*

*

*

*

is

adaptable to

*

is

adaptable to

*

*

is

part

of a

*

*

*

*

has

work

value

according

to

done

by

has

service

time

according

to

*

1

is

of

equivalent to

*

*

Customer

Order

Customer

CustomerVehicle

Part

used

in Customer Order

Service

done

in

Customer Order

Part

Employee

Type

of Vehicle

Part

acquired

outside

Part

in-stock

Accounts

Over

the

Counter Sale

Part

sold

Accounts

Receivable

Accounts

Payable

Manufacturer

Service

Type

Component

Request

Part

requested

Purchase

Part

purchased

Supplier

Trade

Line

Resource

Trade

Trade

Transaction

Resource

Maintenance

Resource

Trade

Figure 5. Instances of Business Resource Management Patterns

transaction has to be analyzed in more detail. The word “Order” may induce us to think about a request. But carefully looking at the attributes of Customer Order class and its relationships with other classes, like “Part used in Customer Order” and “Service done in Customer Order” leads to the conclusion that it is an application of the Resource Maintenance Pattern. Identifying which of the patterns of the family refer to the Purchase transaction is straightforward, as occurred with the Over the Counter Sale transaction, because the word “purchase” is an obvious hint that the Resource Trade Pattern is present.

Other components of the pattern’s core part are now identified, using the semantic knowledge about the domain and, if necessary, the source code. Finally, alternative components of the pattern may be searched for. For example, consider the two occurrences of the Resource Trade Pattern shown in Figure 5. In the first, located in the upper left of the figure, only the core part of the pattern is identified. However, in the second, located at the bottom of the figure, both the core and the alternative parts are present, with the exception of one of the alternatives classes (Source-Party).

3.3. The re-implementation of the system using skeletons
After the patterns have been recognized in the system object model, we proceeded to the system reengineering, using an object oriented language. In our particular case, there was a library with the classes of the family implemented in the Delphi language. This library consists of code skeletons for each class, with general names that should be instantiated to the specific case.

For example, Figure 6 shows part of the code skeleton for the “Resource Maintenance” Class of the Resource Maintenance pattern, presented in the center of Figure 3. Figure 7 shows the code skeleton for its method “Save”.

Comparing Figure 6 and Figure 3 it is possible to see that only the relationship linking the “Resource Maintenance” class to the “Resource” class is cared for in the code of Figure 6. However, class “Resource Maintenance” has relationships to other classes that appear in Figure 3, which are cared for by the code skeletons of these other classes.

To re-implement the system in Delphi, these skeletons were particularized to the instances found during the pattern recognition phase. Figure 8 shows part of the code for the “Customer Order” class, that plays the role “Resource Maintenance” in this particular instance of the pattern. Figure 9 shows the same method shown in Figure 6, now instantiated to the “Customer Order” class.

// Resource Maintenance Class

// Definition

type

 ResourceMaintenance = class

 // Interface methods

 public

 procedure Save;

 function Delete:Boolean;

 function RMNumberExists(x:Integer):

 Boolean;

 function GetRMNumber: Integer;

 function GetEntryDate: TDateTime;

 procedure SetRMNumber(x: Integer);

 procedure SetEntryDate(x: TdateTime);

 function New: Integer;

 . . .

 private // private attributes

 ResMaintNumber: Integer;

 EntryDate: TDateTime;

 Faults: String[80];

 TotalPrice: Currency;

 ExitDate: TDateTime;

 Aresource: Resource;

 // Methods that access the database tables

 procedure AssignObjectToParameter(

 x:TQuery);

 procedure Create;

 procedure Update;

 procedure Eliminate;

 function LoadByRMNumber(x: Integer;

 assign:Boolean): Boolean;

 Function Last: Integer;

 . . .

Figure 6. Part of code skeleton of the Resource Maintenance class

// Save an object

procedure ResourceMaintenance.Save;

begin

 if (not RMNumberExists(ResMaintNumber))

 then

 // Object does not exist, insert

 //it in the table

 Create

 Else

 // Object already exists, update

 // its non-key attributes

 Update;

end;

Figure 7. Code skeleton for a method of Resource Maintenance class

Instead of particularizing the library classes according to the pattern instances as we did, inheritance could have been used with the same effect.

Comparing Figures 6 and 7 with Figures 8 and 9 we see that the methods and attributes remain the same after the instantiation to a specific application, just having their names modified accordingly. The code skeletons allow the re-implementation of the system in a more productive way than starting from scratch.

// Customer Order Class Definition

type

 CustomerOrder = class

 // Interface methods

 public

 procedure Save;

 function Delete:Boolean;

 function CONumberExists(x:Integer): Boolean;

 function GetCONumber: Integer;

 function GetEntryDate: TDateTime;

 procedure SetCONumber(x: Integer);

 procedure SetEntryDate(x: TdateTime);

 function New: Integer;

 . . .

 private // private attributes

 CustOrderNumber: Integer;

 EntryDate: TDateTime;

 Faults: String[80];

 TotalPrice: Currency;

 ExitDate: TDateTime;

 aVehicle: Vehicle;

 // Methods that access the database tables

 procedure AssignObjectToParameter(

 x:TQuery);

 procedure Create;

 procedure Update;

 procedure Eliminate;

 function LoadByCONumber(x: Integer;

 assign:Boolean): Boolean;

 Function Last: Integer;

 . . .

Figure 8. Part of Customer Order class code

// Save an object

procedure CustomerOrder.Save;

begin

 if (not CONumberExists(CustOrderNumber))

 then

 // Object does not exist, insert

 //it in the table

 Create

 else

 // Object already exists, update

 // its non-key attributes

 Update;

end;

Figure 9. Code for a method of Customer Order class
Some classes of the system object model remain uncovered by the patterns recognized, as for example classes “Component” and “Part acquired outside” of Figure 5. These classes must be implemented from scratch, although they might be examined for possible similarities with other classes of the system. Actually, in our experiment we have used the code skeleton of “Resource” class as the basis to implement these two classes.

Another important result of our experiment is the enhancement obtained in the system interface, with a few changes in the original functionality. In fact, the system remained doing the same things as before, but some additional methods offered by the patterns were not discarded. For example, in the legacy system there was no possibility of listing payments done in a certain period. It was only possible to control coming and overdue payments. This is an important output for the manager that was easily incorporated because the pattern had it present in one of its methods.

4. Concluding remarks

The recognition of patterns in object oriented models improves the communication among designers, as they can speak in a higher abstraction level. In fact, this is one of the aims of software patterns: all the details involved in the solution of the problem addressed by the pattern can be hidden, enhancing team productivity.

The use of patterns in reengineering makes easier the system re-implementation. The results obtained by this experiment showed that the maintenance is improved, as well as the reuse for both reengineering and forward engineering. The library with the classes that compose the patterns of the family will be cast as a framework in the future.

The approach used for recognizing patterns is specific for the reengineering of legacy systems. This is because it encompasses a reverse engineering phase for obtaining the legacy system analysis model and a subsequent phase for the recognition of patterns. If a new system is to be built then patterns can be applied from the beginning and the initial system analysis model is already built with the help of patterns. This is the base of recent methods for systems analysis and design [7, 17].

The approach presented in section 2 is generic across many domains, although here it was applied only to the information systems domain. For other domains, specific sets of patterns have to be chosen. The Pattern Languages of Program Design series of books present patterns for a variety of domains [8, 19, 26].

The strategy presented in section 3.2.2 is valid for the patterns of the family presented in [4]. In fact, this paper completes the information about that family of patterns, as it describes in detail how to identify those patterns in an object oriented model. For other patterns a strategy can be developed, as for example that presented in [5] for recognizing patterns “Type-Object” [14], “Association-Object” [1], “State across a collection” [6] and “Behavior across a collection” [6]. In [5], we apply that strategy to the same case study of this paper, where the code skeletons for these patterns can also be found.

References

[1]
Boyd, L. Business Patterns of Association Objects. In “Martin, R.C.; Riehle, D.; Buschmann, F. Pattern Languages of Program Design 3”, Addison-Wesley, pp. 395-408, 1998.

[2]
Biggerstaff, Ted. J. Design Recovery for Maintenance and Reuse. Computer-IEEE, p. 36-49, July 1989.

[3]
Braga, R.T.V.; Masiero, P.C. Detailing of the analysis model abstraction step of Fusion/Re method, ICMC Technical Report number 70, University of São Paulo, Brazil, march 1998 (in Portuguese). http://www.icmc.sc.usp.br/~rtvb/Relat70.zip
[4]
Braga, R.T.V.; Germano, F.S.R.; Masiero, P.C. A Family of Patterns for Business Resource Management. In Proceedings of the 5th Annual Conference on Pattern Languages of Programs (PLOP’98), Monticello, Illinois, Technical Report #WUCS-98-25, Washington University in St. Louis, Missouri, 1998.

 http://www.icmc.sc.usp.br/~rtvb/Family.doc

[5]
Braga, R.T.V. Software Patterns from Legacy Systems Reverse Engineering. M.Sc. Dissertation, ICMC-University of São Paulo, São Carlos-SP, Brazil, 129 p., November 1998 (in Portuguese).

http:// www.icmc.sc.usp.br/~rtvb/Dissertacao.zip
[6]
Coad, P. Object-Oriented Patterns. Communications of the ACM, V. 35, nº9, pp. 152-159, September 1992.

[7]
Coad, P.; North, D.; Mayfield, M. Object Models – Strategies, Patterns & applications, Yourdon Press, 1995.

[8]
Coplien, J.O. / Schmidt, D. C. (eds.) Pattern Languages of Program Design”, Addison-Wesley, 1995.

[9]
Eriksson, H.; Penker, M. UML Toolkit, Wiley Computer Publishing, 1998.

[10]
Fowler, M. Analysis Patterns. Addison-Wesley, 1997.

[11]
Gall, H.C., Klösh, R.R.; Mittermeir, R.T. Application Patterns in Re-Engineering: Identifying and Using Reusable Concepts. In Proceedings of the 6th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, V.III, pp.1099-1106, July 1996.

[12]
Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns – Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[13]
Hainaut, J-L et al. Structure Elicitation in Database Reverse Engineering. In Proceedings of the III Working Conference on Reverse Engineering (WCRE), IEEE. Monterey - California, p. 131-140, November 1996.

[14]
Johnson, R.; Woolf, B. Type Object. In “Martin, R.C.; Riehle, D.; Buschmann, F. Pattern Languages of Program Design 3”, Addison-Wesley, pp. 47-65, 1998.

[15]
Keller, R.K.; Schauer, R.; Robitaile, S.; Page; P. Pattern-Based Reverse-Engineering of Design Components, In Proceedings of 21st International Conference on Software Engineering, May 1999, to appear.

[16]
Krämer, C.; Prechelt, L. Design Recovery by Automated Search for Structural Design Patterns in Object-Oriented Software, In Proceedings of the III Working Conference on Reverse Engineering, IEEE. Monterey - California, pp. 208-215, November 1996.

[17]
Larman, C. Applying UML and Patterns : An Introduction to Object-Oriented Analysis and Design, Prentice Hall, 1997.

[18]
Martin, R. Discovering Patterns in Existing Applications. In “Coplien, J.O. / Schmidt, D. C. (eds) Pattern Languages of Program Design”, Addison-Wesley, pp. 365-393, 1995.

[19]
Martin, R.C.; Riehle, D.; Buschmann, F. (eds.) Pattern Languages of Program Design 3, Reading-MA, Addison-Wesley, 1998.

[20] Mayrhauser, Anneliese von; Vans, A. M. Program Comprehension During Software Maintenance and Evolution. Computer-IEEE, p.44-55, august 1995.

[21] Ning, J.Q.; Engberts, A.; Kozaczynsku, W. Automated Support for Legacy Code Understanding, Communications of the ACM, V.37, nº 5, pp. 50-57, May 1994.

[22]
Penteado, R.D.; Germano, F. and Masiero, P.C. An Overall Process Based on Fusion to Reverse Engineer Legacy Code. In Proceedings of the III Working Conference on Reverse Engineering, IEEE. Monterey - California, pp. 179-188, November, 1996.

[23]
Penteado, R.D.; Masiero, P.C.; Prado, A.F.; Braga, R.T.V. Reengineering of Legacy Systems Based on Transformation Using the Object Oriented Paradigm. In Proceedings of 5th IEEE Working Conference on Reverse Engineering (WCRE’98), Honolulu, Hawai, EUA, p. 144-153, october 1998.

http://www.icmc.sc.usp.br/~rtvb/Wcre98.zip
[24]
Sneed, Harry M.; Nváry, Erika. Extracting Object-Oriented Specification from Procedurally Oriented Programs, In Proceedings of II Working Conference on Reverse Engineering (WCRE), Toronto, Canada, IEEE, p. 217-226, 1995.

[25]
Valassareddi, R. R.; Carver, D.L. A Graph-Based Object Identification Process for Procedural Programs. In Proceedings of 5th IEEE Working Conference on Reverse Engineering (WCRE’98), Honolulu, Hawai, EUA, p. 50-58, october 1998.

[26]
Vlissides, J.M. ; Coplien, J. O. ; Kerth, N.L. (eds.) Pattern Languages of Program Design 2, Reading-MA, Addison-Wesley, 1996.

[27]
Wong, Kenny; et al. Structural Redocumentation: A case Study. IEEE Software, p. 46-54, January 1995.

Toolkits or frameworks

Pattern catalogs and strategies for pattern recognition

Legacy System

*

1

Payment

Due Date

Payment Date

Installment number

Value

Situation

Coming installments

Overdue payments

Payment done

1

Part

Code

Description

Set

Get

List

Part used in maintenance

Quantity

Cost

Set

Get

Type of resource

Code

Description

Set

Get

*

0..1

1

*

Maintenance Executor

Code

Name

Specialty

Set

Get

List tasks by executor

Maintenance Task

Problem to solve

Labor description

Wasted hours

Cost

Set

Get

Reengineered System

Resource Maintenance

Entry Date

Exit Date

Faults presented

Open Maintenance

Release maintenance

Resource

Code

Description

Set

Get

List by type

Customer

Code

Name

Set

Get

*

System Object Model with patterns

1

*

1

1

*

*

*

*

Legacy System Object Model

(2)

Recognition of software patterns

(3)

Implementation of

the system using patterns

1

(1)

Reverse Engineering

(optional)

� Financial support from CNPq and FAPESP

� Finantial support from FAPESP grant 98/13588-4

1

_988460475.doc

*

*

*

*

*

1

*

0..1

*

*

1

1

 is a

 is a

*

1

produces

1

0..1

refers to

*

*

1

1

done to

done to

*

*

works

with

*

*

*

*

*

*

is

adaptable to

*

is

adaptable to

*

*

is

part

of a

*

*

*

*

has work

value

according

to

 done by

has service

time

according

to

*

1

is of

 done by

0..1

equivalent to

*

*

1

has a

*

made by

*

1

1

produces

*

1

*

*

1

1

*

 is a

1

*

 serviced by

needs

Customer Order

Number

Entry Date

Faults presented

Total Cost

Completion Date

Customer

Code

Name

Address

Telephone

CustomerVehicle

License Number

City

Part used in Customer Order

Quantity

Cost

Service done in

Customer Order

Cost

Part

Description

Cost

Price

Employee

Code

Name

Address

Specialty

1

 Type of Vehicle

Mark

Category

Part acquired outside

Code

Purchase place

Part in-stock

Bar Code

Qtty in stock

Localization

Accounts

Due Date

Payment Date

Installment number

Value

Status

Over the Counter Sale

Number

Date

Total Cost

Part sold

Quantity

Cost

is a

produces

Accounts Receivable

Accounts Payable

Manufacturer

Code

Name

owns

Service Type

Code

Labor description

Component

Code

Description

Request

Number

Date

Status

Part requested

Quantity

Unit cost

Purchase

Number

Date

Total Cost

Vendor Name

Taxes Values

Part purchased

Quantity

Unit cost

Unit

disccount

Supplier

Code

Name

Fax Number

Vendor name

Trade Line

Code

Description

_988460901.doc

*

*

*

1

1..*

0..1

1..*

1..*

1

1

*

1

*

1

0..1

0..1

1

Trade Transaction

Date

Vendor Name

Observations

Include transaction

Cancel transaction

Get transaction by vendor

1

*

Destiny-Party

Code

Name

Set

Get

Get transactions by party

Get requests by party

Resource Request

Request Date

Situation

Vendor Name

Observations

Make Request

Cancel Request

Get non-attended requests

Resource

Code

Description

Quantity in stock

Set

Get

List by type

Payment

Due Date

Payment Date

Installment number

Value

Situation

Coming installments

Overdue payments

Payment done

Type of Resource

Code

Description

Set

Get

*

Resource Traded

Quantity

Value

Set

Get

Resource Requested

Quantity

Estimated Value

Set

Get

Source-Party

Code

Name

Set

Get

_982137962.doc

Payment

Destiny

party

Resource

requested

Resource

Request

Resource

traded

Trade

Transaction

Type

of

Resource

Resource

Part

Part

used

in

Maintenance

Resource

Maintenance

Maintenance

Task

Payment

Type

of

Resource

Maintenance

Executor

Resource

Customer

Type

of

Resource

Resource

Payment

Destiny

Party

Resource

Traded

*

1

*

0..1

works

with

*

*

*

*

*

is

adaptable to

*

is

adaptable to

*

*

is

part

of a

*

*

*

*

has

work

value

according

to

done

by

has

service

time

according

to

*

1

is

of

equivalent to

*

*

Customer

Order

Customer

CustomerVehicle

Part

used

in Customer Order

Service

done

in

Customer Order

Part

Employee

Type

of Vehicle

Part

acquired

outside

Part

in-stock

Accounts

Over

the

Counter Sale

Part

sold

Accounts

Receivable

Accounts

Payable

Manufacturer

Service

Type

Component

Request

Part

requested

Purchase

Part

purchased

Supplier

Trade

Line

Resource

Trade

Trade

Transaction

Resource

Maintenance

Resource

Trade

